541a Qualifying Exam Spring, 2006

Name:

1	
2	
total	

1. Let X_1, \dots, X_n be a random sample from a $N(\theta, 1)$ distribution, where $\theta \in \mathbf{R}$ is an unknown parameter.

a) Find the Fisher information $I(\theta)$.

b) Find a complete and sufficient statistic for θ .

c) Find an unbiased estimate of $P(X \le 0)$.

d) Find the UMVUE (uniformly minimum variance unbiased estimator) of $P(X \le 0)$.

2. Let X_1, \ldots, X_n be i.i.d. with $P(X_i = 1) = 1 - P(X_i = 0) = p, p \in (0, 1)$.

a) Show that the average, \bar{X}_n , is the MLE of p

b) Find the mean μ_n and variance σ_n^2 of \bar{X}_n , and invoke the Central Limit Theorem to determine the asymptotic distribution of \bar{X}_n , properly centered and \sqrt{n} scaled.

c) Find the MLE $\hat{\theta}$ of the log odds parameter,

$$\theta = \log\left(\frac{p}{1-p}\right)$$

and, under proper centering and \sqrt{n} scaling, apply the Delta Method to find its non-trivial asymptotic distribution.

d) Find a variance stabilizing transformation for the estimate of \hat{p} in a). (Recall that a variance stabilizing transformation for the estimator $\hat{\theta}$ is a function g such that the (properly centered and scaled) non-trivial asymptotic distribution of $g(\hat{\theta})$ does not depend on any unknown parameters.)