Last Name: \qquad First Name: \qquad

ID\#: \qquad Signature: \qquad

1. A run in a sequence of coin tosses is a maximal subsequence of consecutive tosses all having the same outcome; for example HHHTHHTTH has 5 runs. A biased coin, with $p=\mathbf{P}($ heads $) \in(0,1)$, is tossed n times. Write $q=1-p$. Let R_{n} be the number of runs in the first n tosses. Find exact formulas for
a) $\mu_{n}=\mathbf{E} R_{n}$ and
b) $\sigma_{n}^{2}=\operatorname{Var}\left(R_{n}\right)$.

HINT: pay careful attention to boundary effects-what happens at the start and end of the sequence of n tosses. Note that $\mu_{1}=1, \sigma_{1}^{2}=0$, and use this as a check on your answers. Note also that $\mathbf{P}\left(R_{2}=1\right)=p^{2}+q^{2}, \mathbf{P}\left(R_{2}=\right.$ $2)=2 p q$, so $\mu+2=1+2 p q$.
c) For the special case $p=1 / 2$, the distribution of $R_{n}-1$ is very well known distribution (e.g. Binomial, Poisson, Hypergeometric, Geometric, etc) NAME the distribution AND its parameter(s).
2. Assume the vector $\mathbf{X}=\left(X_{1}, \ldots, X_{N}\right)$ has a multivariate normal distribution $N(\mu, \mathbf{V})$, where μ is the vector of expected values and \mathbf{V} is the covariance matrix. Let c_{1}, \ldots, c_{N} be constants.

Find the distribution of $Y=\sum_{i=1}^{N} c_{i} X_{i}$.
3. Let $S_{n}=X_{1}+\cdots+X_{n}, n \leq 1$, be a random walk, where $E X_{k}=\mu$ and $\operatorname{Var}\left(X_{k}\right)=\sigma^{2}, 0<\sigma^{2}<\infty$.
(a) Find the covariance $\operatorname{Cov}\left(S_{n}, S_{m}\right)$ and the correlation coefficient $\rho\left(S_{n}, S_{m}\right)$ of S_{n} and $S_{m}, m \neq n$.
(b) Assume $n>m$. Find $\lim _{n \rightarrow \infty} \operatorname{Cov}\left(S_{n}, S_{m}\right)$ and $\lim _{n \rightarrow \infty} \rho\left(S_{n}, S_{m}\right)$. Does $\lim _{n \rightarrow \infty} \operatorname{Cov}\left(S_{n}, S_{m}\right)$ depend on the distribution of the increments? Does $\lim _{n \rightarrow \infty} \rho\left(S_{n}, S_{m}\right)$ depend on the distribution of the increments?

