

Figure 1. A random connection

Fall 2006 Qualifying exam, Math 505a

Do all three problems, attempt all parts
Problem 1. Let X, Y, and Z be independent standard normal random variables.
(a) Show that $X^{2}+Y^{2}$ and $\frac{X}{\sqrt{X^{2}+Y^{2}}}$ are independent.
(b) Show that

$$
\frac{X+Y Z}{\sqrt{1+Z^{2}}}
$$

is standard normal (Hint: condition on Z).
Problem 2. On Figure 1, each of the five connections can be open or closed independently of other connections. The probability to have a specific connection closed is p.
(a) Find the probability that there is a path of closed connections from A to C.
(b) Find the conditional probability that the connection along the diagonal $B D$ is closed given that there is a path of closed connections from A to C.
Problem 3. Let S_{n} a random walk on \mathbb{Z}, with $S_{0}=0$. Let $\tau_{0}=\inf \left\{n>0: S_{n}=0\right\}$, the hitting time of 0 .
(a) Show that

$$
1=\sum_{m=0}^{n} P_{0}\left(S_{n-m}=0\right) P_{0}\left(\tau_{0}>m\right)
$$

(Hint: Condition according to the last time, that the chain will visit 0 , before time n.)
(b) Assume further that S_{n} is simple random walk, that is, steps are plus one or minus one with probability one-half each. Assume also that n is even. The first term in the sum, indexed by $m=0$, is simply $P\left(S_{n}=0\right)$. Give a simple expression a_{n} which is asymptotic to this, that is, such that the ratio $a_{n} / P\left(S_{n}=0\right)$ is close to 1 for large even n.
c) Continuing (b), the last term in the sum, indexed by $m=n$, is simply $P\left(\tau_{0}>n\right)$. Give a simple expression b_{n} which is asymptotic to this.

