PARTIAL DIFFERENTIAL EQUATIONS QUALIFYING EXAM Fall 2022

Partial credit will be awarded, but in the event that you can not fully solve a problem you should state clearly what it is you have done and what you have left out. Start each problem on a fresh sheet of paper and write on only one side of the paper.

1. Consider a solution u to the nonlinear equation

$$
\left\{\begin{align*}
-\Delta u & =\lambda u^{2}(1-u) & & \text { in } \Omega, \tag{1}\\
u & =0 & & \text { on } \partial \Omega,
\end{align*}\right.
$$

where $\lambda>0$ and Ω is a bounded domain with smooth boundary. Prove that $0 \leq u \leq 1$.
2. Let $u(x, t)$ be a solution of the initial value problem

$$
\begin{cases}u_{t t}-\Delta u=0 & \text { in } \mathbb{R}^{3} \times(0, \infty) \\ u(x, 0)=g(x), u_{t}(x, 0)=h(x) & \text { for } x \in \mathbb{R}^{3}\end{cases}
$$

where $g, h \in C^{\infty}\left(\mathbb{R}^{3}\right)$ and are supported in the ball $B(0, R)$.
(a) Use the Kirchoff formula to show that

$$
|t \cdot u(x, t)| \leq C\left(2+\frac{1}{t}\right)|\partial B(x, t) \cap B(0, R)|
$$

for all $(x, t) \in \mathbb{R}^{3} \times(0, \infty)$, where $|\cdot|$ denotes two-dimensional Lebesgue measure.
(b) Show that for some $t_{0}>0$ the measure $|\partial B(x, t) \cap B(0, R)|$ can be bounded by a constant independent of $t \geq t_{0}$, and conclude that

$$
|u(x, t)| \leq \frac{C}{t}
$$

for all $(x, t) \in \mathbb{R}^{3} \times(0,+\infty)$, where $C>0$ is a constant.
3. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and assume $u(x, t) \geq 0$ is a function with $u \in$ $C^{2}(\bar{\Omega} \times[0,+\infty))$, which solves the heat conduction equation with heat loss due to radiation

$$
\left\{\begin{align*}
\left(\partial_{t}-\Delta\right) u & =-u^{4} & & \text { in } \Omega, \tag{2}\\
u & =0 & & \text { on } \partial \Omega,
\end{align*}\right.
$$

prove that we can find a constant C independent of the initial data $u(0)$, such that

$$
E(1):=\int_{\Omega} u(x, 1)^{2} \mathrm{~d} x \leq C .
$$

