## Screening Exam on Numerical Analysis - Fall 2006

## 1. Gaussian-Seidel Method

Consider the $n \times n$ matrix $A_{n}$ defined by

$$
A_{n}=\left(\begin{array}{ccccc}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & 2 & -1 \\
0 & \ldots & 0 & -1 & 2
\end{array}\right)
$$

(a) Show that the vectors $\vec{v}_{k}^{n}$ defined by

$$
\vec{v}_{k}^{n}=\left(\begin{array}{c}
\sin \frac{k \pi}{n+1} \\
\sin \frac{2 k \pi}{n+1} \\
\vdots \\
\sin \frac{n k \pi}{n+1}
\end{array}\right)
$$

are eigenvectors of matrix $A_{n}$. Find the associated eigenvalues.
(b) Show that Gauss Seidel method converges for solving equation $A_{n} x=b$.
(c) Find the limit of the condition number of $A_{n}$ as $n$ tends toward infinity.

## 2. Least square

Suppose you are given the singular value decomposition (SVD) of a matrix $A$.
(a) Explain how to use this SVD of $A$ to obtain a simple solution to the least square problem

$$
\min _{x}\|A x-b\|_{2}
$$

(b) Using your work in part a), give an algorithm to solve the least square problem. Show also, that your algorithm can be used to obtain the minimum norm solution.

## 3. Numerical Integral

(a) A Legendre polynomial $L(x)$ of degree $n$ satisfies

- $\int_{-1}^{1} L(x) p(x) d x=0$ for any polynomial $p(x)$ with degree less than $n$,
- $L(1)=1$

Find $L(x)$ of degree 3 .
(b) Show that if $f$ and $g$ are polynomials of degree less than $n$, if $x_{i}, i=$ $1,2, \ldots, n$ are the roots of Legendre polynomial with degree $n$, and if

$$
\gamma_{i}=\int_{-1}^{1} l_{i}(x) d x
$$

with

$$
l_{i}(x)=\prod_{k=1, k \neq i}^{n} \frac{x-x_{k}}{x_{i}-x_{k}}, i=1,2, \ldots, n
$$

then

$$
\int_{-1}^{1} f(x) g(x) d x=\sum_{i=1}^{n} \gamma_{i} f\left(x_{i}\right) g\left(x_{i}\right)
$$

(Hint: one can write $f(x) g(x)=L(x) q(x)+r(x)$, where $L(x)$ is Legendre polynomial with degree $n$.)

## 4. Linear Equation

We say a vector $X=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$ is an oscillation vector, if $x_{i} x_{i+1}<0$ for all $1 \leq i \leq n-1$. Let $n \geq 2$ be an integer and $t$ be a real number with $0<t<1$. Let $A_{n}$ be $n \times n$ tridiagonal matrix with

$$
A_{n}=\left(\begin{array}{ccccc}
t & 1 & & & \\
-1-t & t & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1-t & t & 1 \\
& & & -1-t & t
\end{array}\right)
$$

$X=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$ is the solution of linear system $A_{n} X=e_{n}$, where $e_{n}=$ $(0, \ldots, 0,1)^{\prime}$ is a $n$-dimensional unit column vector.
(a) Prove that $X$ is an oscillation vector, when $n=2$.
(b) Prove that $X$ is an oscillation vector for all $n \geq 2$.
(Remark: This partially explains the typical oscillation behavior of Galerkin finite element solution for BVP, since error vector satisfies similar linear equation.)

