1. Gaussian-Seidel Method

Consider the $n \times n$ matrix A_n defined by

$$A_n = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & 2 & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix}.$$

(a) Show that the vectors \vec{v}_k^n defined by

$$\vec{v}_k^n = \begin{pmatrix} \sin \frac{k\pi}{n+1} \\ \sin \frac{2k\pi}{n+1} \\ \vdots \\ \sin \frac{nk\pi}{n+1} \end{pmatrix}$$

are eigenvectors of matrix A_n . Find the associated eigenvalues.

- (b) Show that Gauss Seidel method converges for solving equation $A_n x = b$.
- (c) Find the limit of the condition number of A_n as n tends toward infinity.

2. Least square

Suppose you are given the singular value decomposition (SVD) of a matrix A.

(a) Explain how to use this SVD of A to obtain a simple solution to the least square problem

$$\min_{x} \|Ax - b\|_2$$

(b) Using your work in part a), give an algorithm to solve the least square problem. Show also, that your algorithm can be used to obtain the minimum norm solution.

3. Numerical Integral

- (a) A Legendre polynomial L(x) of degree n satisfies
 - ∫¹₋₁ L(x)p(x)dx = 0 for any polynomial p(x) with degree less than n,
 L(1) = 1

Find L(x) of degree 3.

(b) Show that if f and g are polynomials of degree less than n, if x_i , i = 1, 2, ..., n are the roots of Legendre polynomial with degree n, and if

$$\gamma_i = \int_{-1}^1 l_i(x) dx$$

with

$$l_i(x) = \prod_{k=1, k \neq i}^n \frac{x - x_k}{x_i - x_k}, i = 1, 2, \dots, n$$

then

$$\int_{-1}^{1} f(x)g(x)dx = \sum_{i=1}^{n} \gamma_{i}f(x_{i})g(x_{i})$$

(Hint: one can write f(x)g(x) = L(x)q(x) + r(x), where L(x) is Legendre polynomial with degree n.)

4. Linear Equation

We say a vector $X = (x_1, \ldots, x_n)'$ is an oscillation vector, if $x_i x_{i+1} < 0$ for all $1 \le i \le n-1$. Let $n \ge 2$ be an integer and t be a real number with 0 < t < 1. Let A_n be $n \times n$ tridiagonal matrix with

$$A_n = \begin{pmatrix} t & 1 & & & \\ -1 - t & t & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 - t & t & 1 \\ & & & -1 - t & t \end{pmatrix}$$

 $X = (x_1, \ldots, x_n)'$ is the solution of linear system $A_n X = e_n$, where $e_n = (0, \ldots, 0, 1)'$ is a *n*-dimensional unit column vector.

- (a) Prove that X is an oscillation vector, when n = 2.
- (b) Prove that X is an oscillation vector for all $n \ge 2$.

(Remark: This partially explains the typical oscillation behavior of Galerkin finite element solution for BVP, since error vector satisfies similar linear equation.)