Geometry/Topology Qualifying Exam

September 2006

Solve all SEVEN problems. Partial credit will be given to partial solutions.

1. Let M, N be compact oriented manifolds of dimension n (without boundary), and let $f: M \rightarrow N$ be a differentiable map. Prove that, if the induced homomorphism $f^{*}: H_{d R}^{n}(N ; \mathbb{R}) \rightarrow H_{d R}^{n}(M ; \mathbb{R})$ between de Rham cohomology groups is surjective, then f is surjective.
2. Let D^{2} be the closed unit disk in the complex plane \mathbb{C}, bounded by the unit circle S^{1}. Consider the 2-dimensional torus $T^{2}=S^{1} \times S^{1}$ and two copies D_{1} and D_{2} of D^{2}. For two integers p, q, let $X_{p q}$ be the quotient space of the disjoint union

$$
T^{2} \sqcup D_{1} \sqcup D_{2}
$$

by the equivalence relation that identifies each point $e^{i \theta}$ in the boundary of D_{1} to $\left(e^{\mathrm{i} p \theta}, 1\right) \in S^{1} \times S^{1}$, and identifies each point $e^{\mathrm{i} \phi}$ in the boundary of D_{2} to $\left(1, e^{\mathrm{i} q \phi}\right) \in$ $S^{1} \times S^{1}$. Compute the fundamental group of $X_{p q}$.
3. Prove that any two continuous maps $f, g: X \rightarrow S^{1}$ from a simply-connected space X to the circle S^{1} are homotopic.
4. Calculate the relative homology groups $H_{*}\left(S^{1} \times D^{2}, S^{1} \times \partial D^{2}\right)$, where D^{2} denotes the 2 -dimensional closed disk and S^{1} is the circle.
5. Let M be a compact oriented n-manifold with $H_{d R}^{1}(M ; \mathbb{R})=0$ and let $f: M \rightarrow T^{n}$ be a smooth map. Show that the degree of f is equal to 0 . (Possible hint: Write $T^{n}=S^{1} \times \cdots \times S^{1}$; if θ_{i} is the angular coordinate for the i-th factor S^{1}, then $d \theta_{1} \wedge \cdots \wedge d \theta_{n}$ is a volume form for T^{n}.)
6. Recall that the rank of a matrix is the dimension of the span of its row vectors. Show that the space of all 2×3 matrices of rank 1 forms a smooth manifold.
7. Consider the group $S O(3)$ of orientation-preserving isometries of the 2-dimensional sphere S^{2}. Namely, $\mathrm{SO}(3)$ consists of all rotations of \mathbb{R}^{3} whose axis passes through the origin or, equivalently of all 3×3 matrices A such that $A A^{t}=\operatorname{Id}$ and $\operatorname{det}(A)=1$. Prove that, if ω is a 1 -form (not necessarily closed) on S^{2} such that $\phi^{*}(\omega)=\omega$ for every $\phi \in \mathrm{SO}(3)$, then $\omega=0$.

