Geometry/Topology Qualifying Exam September 2006

Solve all SEVEN problems. Partial credit will be given to partial solutions.

- 1. Let M, N be compact oriented manifolds of dimension n (without boundary), and let $f: M \to N$ be a differentiable map. Prove that, if the induced homomorphism $f^*: H^n_{dR}(N; \mathbb{R}) \to H^n_{dR}(M; \mathbb{R})$ between de Rham cohomology groups is surjective, then f is surjective.
- 2. Let D^2 be the closed unit disk in the complex plane \mathbb{C} , bounded by the unit circle S^1 . Consider the 2-dimensional torus $T^2 = S^1 \times S^1$ and two copies D_1 and D_2 of D^2 . For two integers p, q, let X_{pq} be the quotient space of the disjoint union

$$T^2 \sqcup D_1 \sqcup D_2$$

by the equivalence relation that identifies each point $e^{i\theta}$ in the boundary of D_1 to $(e^{ip\theta}, 1) \in S^1 \times S^1$, and identifies each point $e^{i\phi}$ in the boundary of D_2 to $(1, e^{iq\phi}) \in S^1 \times S^1$. Compute the fundamental group of X_{pq} .

- 3. Prove that any two continuous maps $f, g: X \to S^1$ from a simply-connected space X to the circle S^1 are homotopic.
- 4. Calculate the relative homology groups $H_*(S^1 \times D^2, S^1 \times \partial D^2)$, where D^2 denotes the 2-dimensional closed disk and S^1 is the circle.
- 5. Let M be a compact oriented *n*-manifold with $H^1_{dR}(M; \mathbb{R}) = 0$ and let $f: M \to T^n$ be a smooth map. Show that the degree of f is equal to 0. (Possible hint: Write $T^n = S^1 \times \cdots \times S^1$; if θ_i is the angular coordinate for the *i*-th factor S^1 , then $d\theta_1 \wedge \cdots \wedge d\theta_n$ is a volume form for T^n .)
- 6. Recall that the *rank* of a matrix is the dimension of the span of its row vectors. Show that the space of all 2×3 matrices of rank 1 forms a smooth manifold.
- 7. Consider the group SO(3) of orientation-preserving isometries of the 2-dimensional sphere S^2 . Namely, SO(3) consists of all rotations of \mathbb{R}^3 whose axis passes through the origin or, equivalently of all 3×3 matrices A such that $AA^t = \text{Id}$ and $\det(A) = 1$. Prove that, if ω is a 1-form (not necessarily closed) on S^2 such that $\phi^*(\omega) = \omega$ for every $\phi \in \text{SO}(3)$, then $\omega = 0$.