ODE EXAM - Fall 2022

The exam has four problems on two pages. Each problem is worth 10 points. Do all four problems.

1. Let $a:[0, \infty) \rightarrow[0, \infty)$ and $u:[0, \infty) \rightarrow[0, \infty)$ be two nonnegative continuous functions. Assume that

$$
u(x) \leq \int_{0}^{x} a(y) u(y) d y
$$

for all $x \geq 0$. Show, without citing Gronwal's inequality, that $u(x)=0$ for $x \geq 0$. To clarify, you cannot simply claim that the result follows from Gronwal's inequality; instead, you either establish Gronwal's inequality in this setting or use some other argument.
2. Consider the $2^{\text {nd }}$ order ODE for the unknown function $x=x(t)$,

$$
x^{\prime \prime}+p(t) x^{\prime}+a x=0,
$$

where $p(t)=2-3 \cos (t)$ and a is a real number. Suppose $\phi(t)$ and $\psi(t)$ form a fundamental set of solutions, i.e. the matrix

$$
X(t)=\left(\begin{array}{cc}
\phi(t) & \psi(t) \\
\phi^{\prime}(t) & \psi^{\prime}(t)
\end{array}\right)
$$

is non-singular. Prove that

$$
\lim _{t \rightarrow+\infty} \operatorname{det} X(t)=0
$$

that is, the determinant of the matrix $X(t)$ converges to zero as $t \rightarrow+\infty$.
3. Consider the system for the unknown functions $x(t)$ and $y(t)$:

$$
\left\{\begin{array}{l}
x^{\prime}=-y-y^{2} x^{3} \tag{1}\\
y^{\prime}=x-x^{2} y
\end{array}\right.
$$

(i) Identify the stationary points of the system.
(ii) Prove that the system (1) has a unique solution $(x(t), y(t))$ satisfying $x(0)=1, y(0)=$ 0 , and the solution is defined for all $t \geq 0$.
(iii) Prove that the solution from part (ii) satisfies

$$
\lim _{t \rightarrow+\infty} x(t)=\lim _{t \rightarrow+\infty} y(t)=0
$$

4. Consider the two-dimensional ODE

$$
\begin{equation*}
\boldsymbol{x}^{\prime}=\boldsymbol{f}(\boldsymbol{x}), \tag{2}
\end{equation*}
$$

where the vector field \boldsymbol{f} is continuously differentiable everywhere in \mathbb{R}^{2}. Suppose Γ is a periodic orbit for (2).
(i) What can we conclude about the index of Γ with respect to \boldsymbol{f} ? Give a short explanation.
(ii) What can we conclude about the number and type of stationary points of \boldsymbol{f} inside the region enclosed by Γ ? Provide as many details as you can.
(iii) Which of the following statements about the stationary points of \boldsymbol{f} inside the region enclosed by Γ are definitely NOT true? Explain your conclusions.

1. \boldsymbol{f} has exactly one stationary point inside the region enclosed by Γ, and the point is a saddle.
2. \boldsymbol{f} has exactly two stationary points inside the region enclosed by Γ : a saddle and a center.
3. \boldsymbol{f} has exactly three stationary points inside the region enclosed by Γ : a saddle, a center, and a stable node.
