1. Let X_{1}, \ldots, X_{n} be i.i.d. with Poisson distribution $P(\lambda)$ where $\lambda \in(0, \infty)$, that is, for all $i=1, \ldots, n$ that $P\left(X_{i}=k\right)=e^{-\lambda} \lambda^{k} / k!, k=0,1, \ldots$ and are independent.
(a) Show that this family of distributions has the monotone likelihood ratio property with respect to an appropriately chosen statistic $T\left(X_{1}, \ldots, X_{n}\right)$.
(b) For the statistical model described, give an example of a hypothesis testing problem $H_{0}: \theta \in$ $\Theta_{0}, H_{a}: \theta \in \Theta_{a}$ where Θ_{0}, Θ_{a} are two subsets of $(0, \infty)$ that satisfy $\Theta_{0} \cap \Theta_{a}=\emptyset, \Theta_{0} \cup \Theta_{a}=$ $(0, \infty)$, that admits a uniformly most powerful test of any size $\alpha \in[0,1]$. Justify your answer.
(c) For the statistical model described above, give an example of a hypothesis testing problem $H_{0}: \theta \in \Theta_{0}, H_{a}: \theta \in \Theta_{a}$, with Θ_{0}, Θ_{a} satisfying the same properties as in part (b), that does not admit a uniformly most powerful test of given size $\alpha \in(0,1)$. Justify your answer.
2. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random sample of size n from a family of probability densities $\left\{f_{\theta}: \theta \in\right.$ $\mathbb{R}\}$, so that $f_{\theta}: \mathbb{R}^{n} \rightarrow(0, \infty)$ for any $\theta \in \mathbb{R}$, and X_{1}, \ldots, X_{n} are i.i.d. Fix $\theta_{0} \in \mathbb{R}$. Suppose we test the hypothesis H_{0} that $\left\{\theta=\theta_{0}\right\}$ versus the alternative $\left\{\theta \neq \theta_{0}\right\}$. Let $Y=Y_{n}$ denote the MLE of θ, and assume that under $\mathrm{P}_{\theta_{0}}$ that

$$
Y_{n} \rightarrow_{p} \theta_{0} \quad \text { and } \quad \sqrt{n}\left(Y-\theta_{0}\right) \rightarrow_{d} \mathcal{N}\left(0, I_{X_{1}}^{-1}\right)
$$

where \rightarrow_{p} and \rightarrow_{d} denote convergence in probability and in distribution respectively, \mathcal{N} denote the normal distribution and I_{X} the Fisher information, which we assume exists.
Let

$$
\lambda(X):=\frac{\sup _{\theta \in \mathbb{R}} f_{\theta}(X)}{f_{\theta_{0}}(X)}
$$

denote the generalized likelihood ratio statistic. If H_{0} is true, we will ask you to show that $-2 \log \lambda(X)$ converges in distribution as $n \rightarrow \infty$ to a chi-squared random variable with one degree of freedom, under some additional assumptions.
Fix $x \in \mathbb{R}^{n}$ and denote $\ell_{n}(\theta):=\log f_{\theta}(x)$. Below you may assume whatever smoothness conditions you require for your argument, but please note them when they are applied, in the form of, say: here we assume that a second order Taylor expansion for $\ell_{n}(\theta)$ holds with appropriate form of remainder.
(a) Using Taylor series, show that

$$
-2 \log \lambda(X)=-\ell_{n}^{\prime \prime}(\widehat{Y})\left(\theta_{0}-Y\right)^{2}
$$

where \widehat{Y} is some point in an interval with endpoints Y and θ_{0}.
(b) Using the weak law of large numbers, show that, for any $\theta \in \mathbb{R}, \frac{1}{n} \ell_{n}^{\prime \prime}(\theta)$ converges in probability to the constant $I_{X_{1}}(\theta)$ as $n \rightarrow \infty$, and that the same conclusion holds for $\frac{1}{n} \ell_{n}^{\prime \prime}(\widehat{Y})$.
(c) Combining the above observations, conclude that $-2 \log \lambda(X)$ converges in distribution to a chi-squared random variable with one degree of freedom.

