1. Let X_1, \ldots, X_n be i.i.d. random variables, so that X_1 has probability density function $f_{\theta} \colon \mathbb{R} \to [0, \infty)$, where $\theta > 0$ is an unknown parameter and

$$f_{\theta}(x) := \begin{cases} \frac{2x}{\theta^2}, & 0 \le x \le \theta\\ 0, & \text{else.} \end{cases}$$

- (a) Find any method of moments estimator $\hat{\theta}_n$ of θ . Is $\hat{\theta}_n$ unbiased?
- (b) Show that $\hat{\theta}_n$ converges in probability as $n \to \infty$.
- (c) Show that $\widehat{\theta}_n$ converges in distribution as $n \to \infty$, and identify the limiting distribution.
- (d) Prove or disprove the following statement: let W_1, W_2, \ldots be real random variables that converge in distribution to W. Let Z_1, Z_2, \ldots be real random variables that converge in distribution to Z. Then $W_1 + Z_1, W_2 + Z_2, \ldots$ converges in distribution to W + Z.
- 2. Assume that Y_1, \ldots, Y_n are independent and generated from a linear model $Y_j = \alpha + \beta x_j + \varepsilon_j$, where $\alpha, \beta \in \mathbb{R}$ are unknown, x_j 's are not all equal, and ε_j , $j = 1, \ldots, n$ are i.i.d. N(0, 1) random variables.
 - (a) Write down the likelihood function and find a complete, sufficient statistic for (α, β) . Justify both sufficiency and completeness.
 - (b) Find the maximum likelihood estimator (MLE) of the pair (α, β) .
 - (c) Show that the MLE is unbiased.
 - (d) Show that the MLE has the smallest variance among all unbiased estimators.