Algebra Exam August 2022

Show your work. Be as clear as possible. Do all problems.

- 1. Let G be the quaternion group of order 8.
 - (a) Determine the algebra structure of $\mathbb{R}[G]$.
 - (b) Determine the algebra structure of $\mathbb{C}[G]$.
- 2. Let R be a commutative ring with 1. Let $r_1, \ldots, r_n \in R$ which generate R as an ideal. Let $f : \mathbb{R}^n \to \mathbb{R}$ be defined by $f(a_1, \ldots, a_n) = \sum_i a_i r_i$. Show that the kernel of f is a projective module.
- 3. Let G be a finite group with a cyclic Sylow 2-subgroup S.
 - (a) Show that $N_G(S) = C_G(S)$.
 - (b) Show that if $S \neq 1$, then G contains a normal subgroup of index 2 (hint: suppose that n = [G : S], consider an appropriate homomorphism from G to S_n).
 - (c) Show that G has a normal subgroup N of odd order such that G = NS.
- 4. Let R be a principal ideal domian and $p \in R$ a prime element. Suppose that V is a finitely generated R-module with $p^a V = 0$ and suppose $v \in V$ with the annihilator of v in R the ideal $p^a R$. Prove that $V = Ra \oplus W$ for some submodule W of V.
- 5. Let $f(x) = x^7 3 \in \mathbb{Q}[x]$.
 - (a) Show that f is irreducible in $\mathbb{Q}[x]$.
 - (b) Let K be the splitting field of f over \mathbb{Q} . What is the Galois group of K/\mathbb{Q} .
 - (c) How many subfields L of K are there so such that [K:L] = 7.
- 6. Let M be a maximal ideal of $\mathbb{Q}[x_1, \ldots, x_t]$.
 - (a) Show for each *i*, there exists a nonzero polynomial f_i with coefficients in \mathbb{Q} such that $f_i(x_i) \in M$.
 - (b) Show that there are only finitely many maximal ideals of $\mathbb{C}[x_1, \ldots, x_t]$ which contain M.