Numerical Analysis Preliminary Examination Fall 2022

August 25, 2022

Problem 1.
(a) Show that if $A \in \mathbb{C}^{n \times n}$ is strictly diagonally dominant -i.e., $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|, i=1,2, \ldots, n$ then A is nonsingular.
(b) Provide a nontrivial example, (that is a matrix with no zero rows) of a diagonally dominant matrix that is singular.
(c) Suppose that $A \in \mathbb{C}^{n \times n}$ is strictly diagonally dominant with $a_{i i} \in \mathbb{R}$ and $a_{i i}>0$, $i=1,2, \ldots, n$. Show that every eigenvalue of A has positive real part.
(d) Let $A \in \mathbb{C}^{n \times n}$, and suppose that there is a $k \in\{1,2, \ldots, n\}$ for which $\left|a_{k k}\right| \geq \sum_{j \neq k}\left|a_{k j}\right|$ and that $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ for $i \neq k$. Show that A is nonsingular. (Hint: Apply Gershgorin's Theorem to the matrix $B=D^{-1} A D$, where D is an appropriately chosen diagonal matrix).

Problem 2.

Show that if $A \in \mathbb{C}^{n \times n}$ is diagonalizable with $A=E \Lambda E^{-1}, B \in \mathbb{C}^{n \times n}$ and $\hat{\lambda}$ is an eigenvalue of $A+B$, then there is an eigenvalue λ of A such that $|\lambda-\hat{\lambda}| \leq \kappa(E)\|B\|_{\infty}$, where $\kappa(E)$ denotes the condition number of the matrix E with respect to the infinity matrix norm, $\|\cdot\|_{\infty}$, on $\mathbb{C}^{n \times n}$.

Problem 3.

Let x be the least squares solution to the problem $A x=b$, where A is a $m \times n$ real matrix of rank n.
(a) Derive the normal equations and write the solution x as $x=A^{\dagger} b$ where A^{\dagger} is the pseudoinverse of A. That is find a compact expression for A^{\dagger} in terms of A.
(b) Let $\tilde{b}=b+\delta b$ be a perturbation of the vector b. The matrix A remains unchanged. Let \tilde{x} be the least squares solution to $A \tilde{x}=\tilde{b}$. Show that if $b_{R} \neq 0$, then $\frac{\|\tilde{x}-x\|}{\|x\|} \leq$ $\operatorname{cond}(A) \frac{\left\|\delta b_{R}\right\|}{\left\|b_{R}\right\|}$, where $\operatorname{cond}(A)=\|A\|\left\|A^{\dagger}\right\|, b_{R}$ and δb_{R} are, respectively, the projections of the vectors b and δb onto $R(A)$.

In the following questions, give your answers in terms of fractions and square roots and whenever A, b or δb are mentioned, use:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1 \\
1 & 0
\end{array}\right], b=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \delta b=10^{-3}\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right]
$$

(c) Use Gauss elimination to find the least squares solution of $A x=b$.
(d) Find and use the Cholesky decomposition to find the least squares solution of $A x=b$.
(e) Use part (b) to get an upper bound on $\frac{\|\tilde{x}-x\|}{\|x\|}$. Use any induced norm you like.
(f) Find and use a full or reduced $Q R$ decomposition of A to find the least squares solution of $A x=b$. Use your favorite method to find this $Q R$ decomposition.
(g) Find and use the SVD of A to find the least squares solution of $A x=b$. Use your favorite method to find this SVD.

