ODE EXAM - Fall 2021

The exam has four problems. Each problem is worth 10 points. Do all four problems.

1. Show that, for every $a \in[-2,1]$, the solution $y=y(t)$ of the equation

$$
y^{\prime}=e^{y}-1-3 y
$$

with initial condition $y(0)=a$, is defined for all $t>0$ and satisfies $|y(t)| \leq|a|$.
2. Consider the linear system

$$
X^{\prime}(t)=(A+\varepsilon B(t)) X(t)
$$

where the matrix $A \in \mathbb{R}^{n \times n}$ is constant and symmetric, ε is a real number, and the entries of the matrix $B=B(t) \in \mathbb{R}^{n \times n}$ are bounded continuous functions of t for all $t \geq 0$. Denote by $|X(t)|$ the Euclidean norm of the vector $X(t)$.
Show that if all eigenvalues of A are strictly negative and $|\varepsilon|$ is sufficiently small, then all solutions of the system satisfy

$$
\lim _{t \rightarrow+\infty}|X(t)|=0
$$

3. For the nonlinear system

$$
\left\{\begin{array}{l}
x^{\prime}=x y^{2}+x^{3} \\
y^{\prime}=x^{2} y+y^{3}
\end{array}\right.
$$

identify the critical points and determine their stability.
4. Let $f=f(t)$ be a continuous periodic function with period 1 . Consider the secondorder equation

$$
y^{\prime \prime}(t)+f(t) y(t)=0
$$

and let $u=u(t)$ and $v=v(t)$ be two solutions of the equation with initial conditions $u(0)=v^{\prime}(0)=1, u^{\prime}(0)=v(0)=0$. Show that if $u(1)+v^{\prime}(1)>2$, then the equation has no non-trivial solutions that remain bounded for all $t \in(-\infty,+\infty)$.

