1. Let $\boldsymbol{X} \sim \mathcal{N}_{n}(\mu, \Sigma)$, that is, \boldsymbol{X} has the multivariate normal distribution in \mathbb{R}^{n} with mean μ and covariance matrix Σ, and for all $\alpha \in(0,1)$ defined z_{α} by $P\left(Z \leq z_{\alpha}\right)=\alpha$ where $Z \sim \mathcal{N}(0,1)$.
(a) Let Σ be positive definite, and for fixed μ_{1} and μ_{2}, distinct vectors in \mathbb{R}^{n}, express the NeymanPearson test with type I error $\alpha \in(0,1)$ of $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu=\mu_{1}$ in terms of a test statistic $T(\boldsymbol{X})$ that has the $\mathcal{N}(0,1)$ distribution under H_{0}.
(b) Find the power function β of the test in (a) and determine what it specializes to in the case where the components of \boldsymbol{X} are independent and identically distributed univariate normal distributions.
(c) Let Σ be a non-zero, non-negative definite covariance matrix that is not positive definite. Show that for some values of μ_{0}, μ_{1} that there exists tests for the hypotheses in part (a) that have type I error $\alpha=0$ and power $\beta=1$. Determine a set of necessary and sufficient conditions on μ_{0}, μ_{1} for that to be the case, prove that your conditions are as claimed, and give the form of these $\alpha=0, \beta=1$ tests.
2. Let X_{1}, \ldots, X_{n} be i.i.d. with $\operatorname{Bernoulli}(p)$ distribution for some $p \in(0,1)$, meaning that $P\left(X_{1}=\right.$ $1)=p, P\left(X_{1}=0\right)=1-p$.
(a) Show that the maximum likelihood estimator of p is $\bar{X}_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j}$.
(b) For some $p_{0} \in(0,1)$, we would like to test the null hypothesis $H_{0}: p=p_{0}$ against the alternative $H_{a}: p \neq p_{0}$ using the likelihood ratio test. The log-likelihood ratio test statistic is defined as $\Lambda_{n}=\log \left(\frac{\sup _{p \in[0,1]} L_{n}(p)}{L_{n}\left(p_{0}\right)}\right)$ where $L_{n}(p)$ is the likelihood function, that is, the joint density of the observations, considered as a function of p. Show that the explicit expression for this test statistic is

$$
\Lambda_{n}=n\left(\bar{X}_{n} \log \left(\frac{\bar{X}_{n}}{p_{0}}\right)+\left(1-\bar{X}_{n}\right) \log \left(\frac{1-\bar{X}_{n}}{1-p_{0}}\right)\right)
$$

(c) Prove that

$$
2 \Lambda_{n}=\frac{n\left(\bar{X}_{n}-p_{0}\right)^{2}}{p_{0}\left(1-p_{0}\right)}+o_{P}(1)
$$

where $o_{P}(1)$ is a term that converges to 0 in probability as $n \rightarrow \infty$. Deduce from this expression the approximate distribution of $2 \Lambda_{n}$ for large n.
For this task, you may use the following facts without proving them: $\bar{X}_{n} \log \left(\frac{\bar{X}_{n}}{p_{0}}\right)=\left(\bar{X}_{n}-\right.$ $\left.p_{0}+p_{0}\right) \log \left(1+\frac{\bar{X}_{n}-p_{0}}{p_{0}}\right), \log (1+x)=x-x^{2} / 2+o\left(x^{2}\right)$ when $x \rightarrow 0$ and $n \cdot o\left(\left(\bar{X}_{n}-p_{0}\right)^{2}\right)$ converges to 0 in probability as $n \rightarrow \infty$ (here, $o(\cdot)$ stands for "small-O").

