Geometry and Topology Graduate Exam

Fall 2021
Solve as many problems as you can. Partial credit will be given to partial solutions.
Problem 1. Find all of the 2-sheeted covering spaces (connected or disconnected) of $S^{1} \times S^{1}$, up to isomorphism of covering spaces without basepoints.

Problem 2. Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$ be the function defined by

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2} .
$$

(a) Find a real number r such that $f^{-1}(r)$ is a smooth manifold and prove it.
(b) Find a real number r such that $f^{-1}(r)$ is not a smooth manifold and prove it.

Problem 3. Let $S^{2} \subset \mathbb{R}^{3}$ be the unit sphere, and $i: S^{2} \rightarrow \mathbb{R}^{3}$ be the inclusion. Compute the integral over S^{2} of the restriction

$$
\int_{S^{2}} \omega=\int_{S^{2}} i^{*} \omega
$$

of the 2-form on \mathbb{R}^{3} given by $\omega=2 x^{2} d x \wedge d z-x d y \wedge d z+3 y d x \wedge d z$.
Problem 4. Let \mathcal{D} be the distribution on $\mathbb{R} \times \mathbb{R}_{>0} \times \mathbb{R}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y>0\right\}$ given by the kernel of the 1 -fom $\alpha=d z-\log (y) d x$. Is \mathcal{D} integrable? Provide justification.

Problem 5. Let K be the Klein bottle (the closed square with boundary identifications as pictured below).

(a) Let $p \in K$ be the image of some point in the interior of the closed square (under the identifications above). Say whether the following assertion is true or false (and give justification): $K \backslash\{p\}$ is homotopy equivalent to $S^{1} \vee S^{1}$.
(b) Show that K is homeomorphic to the disjoint union of two Möbius bands with the boundary circles identified.
(c) Use part (b) (whether or not you solved it) to compute $\pi_{1}(K)$ via van Kampen's theorem and the integral singular homology $H_{*}(K ; \mathbb{Z})$ via the Mayer-Vietoris long-exact sequence.

Problem 6. A space-filling curve is a continuous surjective map $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ (it is a classical fact that such curves exist).
(a) Prove that if f is any such space-filling curve, then f cannot be smooth. Equivalently, prove that if $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is any smooth map, then f cannot be surjective.
(b) Prove that if f is any space-filling curve, then f cannot be a homeomorphism.

Problem 7. Let X be the space given by taking the circle S^{1} and attaching two 2cells to S^{1} along degree 9 and 12 attaching maps respectively, and then identifying a point in the interior of the first 2 -cell with a point in the interior of the second 2-cell. Compute the integral homology $H_{*}(X ; \mathbb{Z})$ in every degree.

