## ALGEBRA QUALIFYING EXAM FALL 2021

PROBLEM 1. Classify all groups of order $13^{2} \times 7$.

## PROBLEM 2.

(a) If $G$ is a transitive subgroup of $S_{n}$ with $n>1$ which has no fixed points, prove that there exists $g \neq 1$ in $G$ so that $g$ has no fixed points.
(b). Give an example of $G<S_{n}$ so that every element of $G$ has fixed points but $G$ itself has no fixed points..

PROBLEM 3. Let $b$ be any integer coprime to 7 and consider the polynomial $f_{b}(x)=$ $x^{3}-21 x+35 b$. Show that $f_{b}$ is irreducible over $\mathbb{Q}$. Write $P$ for the set of $b \in \mathbb{Z}$ such that $b$ is coprime to 7 and the Galois group of $f_{b}$ is the alternating group. Find $P$. (Hint: the discriminant of the cubic polynomial of the form $x^{3}+p x+q$ is given by $-4 p^{3}-27 q^{2}$.)

PROBLEM 4. Suppose $R$ is a commutative local ring so $R$ has a unique maximal ideal $\mathfrak{m}$. Show if $x \in \mathfrak{m}$, then $1-x$ is invertible. Show if, in addition, $R$ is Noetherian and $\mathfrak{a} \subset R$ is an ideal such that $\mathfrak{a}^{2}=\mathfrak{a}$, then $\mathfrak{a}=0$.

PROBLEM 5. Let $A$ be a finite dimensional central division algebra over a field $F$. Prove $[A, A] \neq A$.

PROBLEM 6. Let $K \subset F$ be a nontrivial finite field extension. Prove $F \otimes_{K} F$ is not a domain.

