PARTIAL DIFFERENTIAL EQUATIONS QUALIFYING EXAM Fall 2020

Partial credit will be awarded, but in the event that you can not fully solve a problem you should state clearly what it is you have done and what you have left out. Start each problem on a fresh sheet of paper and write on only one side of the paper.

1. Let $u(x)$ be a smooth function satisfying

$$
\begin{aligned}
\Delta u(x)=f(u(x)), & x \in B(0,1) \\
u(x)=0, & x \in \partial B(0,1)
\end{aligned}
$$

where $B(0,1)$ is the unit ball in \mathbb{R}^{n} and f is continuous.
(a) Show that if $f(t)$ has the same sign of t, then u must be identically zero in $B(0,1)$.
(b) What can you say about the solution when $f(t)=t^{4}$?
2. Suppose $u=u(t, x)$ is smooth and bounded, and solves the nonlinear heat equation

$$
\begin{aligned}
\left(\partial_{t}-\Delta\right) u=|\nabla u|^{2}, & (t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{n} \\
u(0, x)=f(x), & x \in \mathbb{R}^{n}
\end{aligned}
$$

(a) Prove that $v=e^{u}$ solves the linear heat equation $\left(\partial_{t}-\Delta\right) v=0$.
(b) Find an explicit formula for u in terms of f.
3. Suppose $u=u(t, x)$ solves the following initial-boundary value problem

$$
\begin{aligned}
(1+t) \partial_{t}^{2} u-\Delta u+\partial_{t} u=0, & (t, x) \in \mathbb{R}_{+} \times \Omega \\
u(t, x)=0, & (t, x) \in \mathbb{R}_{+} \times \partial \Omega \\
u(0, x)=u_{0}(x), & x \in \Omega \\
\partial_{t} u(0, x)=u_{1}(x), & x \in \Omega
\end{aligned}
$$

where Ω is a smooth and bounded domain in \mathbb{R}^{3}, and $u_{0}(x)$ and $u_{1}(x)$ are smooth and compactly supported in Ω.
(a) Show that the L^{2} norm of the solution u is bounded for all $0<t<\infty$.
(b) What can you say about the L^{2} norm of $\partial_{t} u$ as $t \rightarrow \infty$?

