Geometry and Topology Graduate Exam Fall 2020

Solve as many problems as you can. Partial credit will be given to partial solutions.

Problem 1. Suppose that the space X admits a universal covering space \widetilde{X} , namely a covering space that is path connected and simply connected. Show that, if \widetilde{X} is compact, the fundamental group of X is finite.

Problem 2. Let X be the topological space obtained from a regular 2n-gon by identifying opposite edges with parallel orientations. Write a presentation for its fundamental group $\pi_1(X; x_0)$, for a base point $x_0 \in X$ of your choice. (The answer, as a function of n, may depend on the parity of n.)

Problem 3. In $\mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2$, consider the subset

 $X = \left(S^1 \times S^1\right) \cup \left(\{x_0\} \times B^2\right) \cup \left(B^2 \times \{x_0\}\right)$

where the disk B^2 is bounded by the unit circle S^1 in \mathbb{R}^2 , and where $x_0 \in S^1$. Compute the homology group $H_p(X;\mathbb{Z})$ for all p.

Problem 4. In the vector space $M_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$ of all *n*-by-*n* matrices, let $SL_n(\mathbb{R})$ be the special linear group consisting of all $A \in M_n(\mathbb{R})$ with det A = 1. For $A \in SL_n(\mathbb{R})$, describe the tangent space $T_ASL_n(\mathbb{R}) \subset M_n(\mathbb{R})$ by an explicit equation. Possible hint: begin with the case where A is the identity matrix I_n .

Problem 5. Consider the 1-form $\lambda \in \Omega^1(M)$ and the 2-form $\omega = d\lambda \in \Omega^2(M)$ on the manifold M. Suppose that L is a submanifold of M and that, for the inclusion map $i: L \to M$, the pull-back $i^*(\lambda) \in \Omega^1(L)$ is exact, in the sense that there exists a function $\varphi: L \to \mathbb{R}$ such that $i^*(\lambda) = d\varphi$. Show that, for the unit disk $D^2 \subset \mathbb{R}^2$ and for any smooth map $f: D^2 \to M$ which sends the boundary of the disc to L,

$$\int_{D^2} f^*(\omega) = 0.$$

Problem 6. Let $f: S^1 \times S^1 \to S^1 \times S^1$ be the map that, identifying S^1 with the unit circle in the complex plane \mathbb{C} , is defined by

$$f(z_1, z_2) = \left(z_1^2 z_2, z_1^{-1} z_2\right)$$

for every $z_1, z_2 \in S^1 \subset \mathbb{C}$. Compute the homomorphism $H^2(f): H^2_{dR}(S^1 \times S^1) \to H^2_{dR}(S^1 \times S^1)$ induced by f on the de Rham cohomology space $H^2_{dR}(S^1 \times S^1)$. Hint: what is the degree of f?

Problem 7. Let $\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4$ be a 2-form on \mathbb{R}^4 with standard coordinates x_1 , x_2, x_3, x_4 . Consider the vector field $Z = 3x_1\partial_{x_1} + 3x_2\partial_{x_2} + 3x_3\partial_{x_3} + 3x_4\partial_{x_4}$, and let $(\varphi_t)_{t \in \mathbb{R}}$ be the flow that it defines; you may take for granted that this flow exists for all time t. Calculate the pull back $(\varphi_t)^*\omega$. Hint: look at the differential equation that $(\varphi_t)^*\omega$ satisfies.