ALGEBRA QUALIFYING EXAM FALL 2020

PROBLEM 1. Let V_A be a $\mathbb{Q}[x]$ -module that corresponds to a matrix $A \in \operatorname{Mat}_n(\mathbb{Q})$. In other words, $V_A = \mathbb{Q}^n$, and the $\mathbb{Q}[x]$ -module structure is defined by $f \cdot v = f(A)v$, $f \in \mathbb{Q}[x]$, $v \in \mathbb{Q}^n$. The module V_A is called cyclic if there is $v \in V$ so that $\mathbb{Q}[x] \cdot v = V_A$. The matrix A is called cyclic if V_A is cyclic.

(1) Prove: V_A is cyclic if and only if $\operatorname{Ann}(V_A)$ is generated by the characteristic polynomial $\chi(A)$.

(2) For any matrix A there is a cyclic matrix C such that AC - CA = 0.

PROBLEM 2. A finite dimensional algebra over a field has finitely many up to isomorphism simple left modules.

PROBLEM 3. Find all pairwise non-isomorphic groups of order 147 that contain no elements of order 49.

PROBLEM 4. Prove that if for $f, g \in \mathbb{C}[x, y]$ the system of equations f = g = 0 has finitely many solutions, then the algebra $\mathbb{C}[x, y]/(f, g)$ is finite dimensional.

PROBLEM 5. Show that a finitely generated projective module over a principal ideal domain is free.

PROBLEM 6. Show that $p(x) = x^5 - 4x + 2$ is irreducible over \mathbb{Q} , and that it has exactly three real roots. Use this to show that the Galois group of p(x) is S_5 . Answer the question: Is p(x) = 0 solvable by radicals?