ODE EXAM - Fall 2019

The exam has five problems on two pages. Each problem is worth 10 points. Do all five problems.

1. Consider the $2^{\text {nd }}$ order ODE,

$$
x^{\prime \prime}+p(t) x^{\prime}+a x=0,
$$

where a is a real number and the function $p=p(t), t \geq 0$, is continuous and satisfies

$$
\lim _{t \rightarrow+\infty} \int_{0}^{t} p(s) d s=+\infty
$$

Let $\phi(t)$ and $\psi(t)$ be a fundamental set of solutions of the above equation so that the matrix

$$
X(t)=\left(\begin{array}{cc}
\phi(t) & \psi(t) \\
\phi^{\prime}(t) & \psi^{\prime}(t)
\end{array}\right)
$$

is non-singular for all $t \geq 0$. Prove $\lim _{t \rightarrow+\infty} \operatorname{det} X(t)=0$, where $\operatorname{det} A$ denotes the determinant of the matrix A.
2. Consider the planar system of differential equations

$$
\begin{aligned}
& x^{\prime}=-y+x\left[\left(x^{2}+y^{2}\right)^{2}-3\left(x^{2}+y^{2}\right)+1\right], \\
& y^{\prime}=x+y\left[\left(x^{2}+y^{2}\right)^{2}-3\left(x^{2}+y^{2}\right)+1\right] .
\end{aligned}
$$

(a) Prove that the system has a periodic orbit in the annular region

$$
D=\left\{(x, y) \in \mathbb{R}^{2} ; 1<x^{2}+y^{2}<3\right\} .
$$

(b) What can we conclude about the index of this orbit?
(c) What can we conclude about the number of stationary points in D ?

Give your reasons and details.
3. Consider the linear system of ODEs in \mathbb{R}^{n},

$$
\begin{equation*}
x^{\prime}=A(t) x \tag{1}
\end{equation*}
$$

where $A=A(t)$ is an $n \times n$ matrix-valued function, continuous for all $t \in \mathbb{R}$.
Assume that there exists a number $T>0$ such that $A(t+T)=A(t)$ for all $t \in \mathbb{R}$. Describe the structure of a fundamental solution matrix of (1). Justify your conclusions.
4. Once again, consider the system (1), but this time assume that there is a real number δ such that the eigenvalues $\left\{\lambda_{1}(t), \ldots, \lambda_{n}(t)\right\}$ of the matrix $A(t)$ satisfy

$$
\operatorname{Re} \lambda_{j}(t) \leq \delta,
$$

for all $j=1, \ldots, n$ and all $t \geq 0 ; \operatorname{Re} z$ denotes the real part of the complex number z. If it helps, you can keep assuming that the matrix A is periodic.
(a) True or false: if $\delta=0$ then every solution $x=x(t)$ of (1) satisfies $\sup _{t>0}\|x(t)\|<\infty$? Explain your conclusion.
(b) True or false: if $\delta<0$ then every solution $x=x(t)$ of (1) satisfies $\lim _{t \rightarrow+\infty}\|x(t)\|=0$? Explain your conclusion.
(c) True or false: if $\delta<0$ then every solution $x=x(t)$ of (1) satisfies $\sup _{t>0}\|x(t)\|<\infty$? Explain your conclusion.
(d) Will your answers to the above three questions change if the matrix $A=A(t)$ is symmetric for all $t \geq 0$? Explain your conclusion.
5. Let $f=f(x), x \in \mathbb{R}$, be a continuously differentiable function such that the equation $x^{\prime}=f(x)$ has no stationary solutions. Prove that if $x=x(t)$ is a solution of the equation and $x(t)$ is defined for all $t \geq 0$, then

$$
\lim _{t \rightarrow+\infty}|x(t)|=+\infty .
$$

