1. Let X_{1}, \ldots, X_{n} be i.i.d. random variables with $U[0,1]$ (uniform on the interval $[0,1]$) distribution, and let $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ be the order statistics. In particular, $X_{(1)}=\min \left(X_{1}, \ldots, X_{n}\right)$ and $X_{(n)}=\max \left(X_{1}, \ldots, X_{n}\right)$.
(a) Let $\left\{a_{n}\right\}_{n \geq 1},\left\{b_{n}\right\}_{n \geq 1}$ be positive sequences. Express the probability

$$
\mathrm{P}\left(X_{(1)}>\frac{x}{a_{n}}, X_{(n)}<1-\frac{y}{b_{n}}\right)
$$

as a function of x, y.
(b) Set $a_{n}=b_{n}:=n$, and use part (a) to determine the joint asymptotic distribution of $\left(n X_{(1)}, n\left(1-X_{(n)}\right)\right.$. Conclude that $n X_{(1)}$ and $n\left(1-X_{(n)}\right)$ are asymptotically independent.
(c) Use part (b) to find the limiting distribution of $n\left(1-X_{(n)}+X_{(1)}\right)$. Please write down the density of this distribution explicitly.
(d) For Y_{1}, \ldots, Y_{n} i.i.d. $U[a, b]$ with $a<b$, both unknown, use part (c) to find an asymptotic confidence interval at level $1-\alpha \in(0,1)$ for the range $b-a$. (Hint: Consider the transformation $Y=(b-a) X+a$.
2. A population is made up of two subpopulations 1 and 2 in known proportions $p \in(0,1)$ and $1-p$, respectively. For $i=1,2$ let μ_{i} and σ_{i}^{2} denote the unknown mean and known variance, respectively, of subpopulation i.
(a) For $n, m \geq 1$ let X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} denote i.i.d. samples drawn independently from subpopulations 1 and 2, respectively, and let $\bar{X}_{n}=(1 / n) \sum_{i=1}^{n} X_{i}$ and $\bar{Y}_{m}=(1 / m) \sum_{i=1}^{m} Y_{i}$. Show that, for any $n, m \geq 1$,

$$
\widehat{\theta}_{n, m}:=p \bar{X}_{n}+(1-p) \bar{Y}_{m}
$$

is unbiased for the mean of the overall population.
(b) Compute $\operatorname{Var}\left(\widehat{\theta}_{n, m}\right)$.
(c) Now suppose that each data point drawn from subpopulation 1 costs $\$ 1$, and each drawn from subpopulation 2 costs $\$ c$, for some known quantity $c>0$. How should n and m be chosen to achieve the minimal variance $\operatorname{Var}\left(\widehat{\theta}_{n, m}\right)$ subject to a total sampling budget of $\$ b$, where b is a known, large quantity? For this part and the next you can ignore the discreteness of n, m and treat these quantities as continuous.
(d) What is the minimal value of this variance in part 2 c ?

