Geometry and Topology Graduate Exam

 Fall 2019Solve all seven problems. Every problem is weighted equally. Partial credit will be given to partial solutions.
Problem 1. Let X be the union of the twelve edges of a regular cube in \mathbb{R}^{3}. Compute the fundamental group of the complement $\mathbb{R}^{3}-X$.

Problem 2. Let $\mathbb{C P}^{1}$ denote the complex projective space of dimension 1 , and let $f: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ be the map induced by the polynomial

$$
P(X)=X^{7}+5 X^{3}-6 X^{2}+1
$$

(So, f sends the line passing through $(x, 1) \in \mathbb{C}^{2}$ to the line passing through $(P(x), 1)$.) If $\alpha \in \Omega^{2}\left(\mathbb{C P}^{1}\right)$ is a differential form of degree 2 and we write

$$
K:=\int_{\mathbb{C P}^{1}} \alpha
$$

compute the integral

$$
\int_{\mathbb{C P}^{1}} \Omega^{2}(f)(\alpha)
$$

of the pullback $\Omega^{2}(f)(\alpha) \in \Omega^{2}\left(\mathbb{C P}^{1}\right)$ of α under f in terms of K. (Possible hint: degree.)

Problem 3. Let X and Y be two topological spaces and let $f, g: X \rightarrow Y$ be two continuous maps. Consider the topological space

$$
Z=(Y \bigsqcup(X \times[0,1])) \quad / \begin{aligned}
(x, 0) & \sim f(x) \\
(x, 1) & \sim g(x)
\end{aligned}
$$

obtained from the disjoint union $Y \bigsqcup(X \times[0,1])$ by identifying $(x, 0) \sim f(x)$ and $(x, 1) \sim g(x)$ for all $x \in X$. Show that there is a long exact sequence of the form

$$
\cdots \longrightarrow H_{n+1}(Z) \longrightarrow H_{n}(X) \longrightarrow H_{n}(Y) \longrightarrow H_{n}(Z) \longrightarrow H_{n-1}(X) \longrightarrow \ldots,
$$

and identify the homomorphisms involved.
Problem 4. Let $f: S^{n} \rightarrow S^{n}$ be a continuous map that has no fixed points. Find the degree of f. (Hint: $a(x)=-x$.)

Problem 5. Let $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be a nonzero polynomial over \mathbb{R} in n variables that is homogenous of degree d (i.e. $p(\lambda \cdot \vec{x})=\lambda^{d} \cdot p(\vec{x})$ for all $\lambda \in \mathbb{R}$). Show that $p^{-1}(c)$ is a submanifold of \mathbb{R}^{n} for all $c \neq 0$.

Problem 6. Define a differential 1-form on the cylinder

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1\right\} \subset \mathbb{R}^{3}
$$

which is closed but not exact (and show that it has these properties).
Problem 7. Prove that the subset

$$
M=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in \mathbb{R}^{5}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=x_{4}^{3}+x_{5}^{3}\right\}
$$

is not a submanifold of \mathbb{R}^{5}. (Hint: $(0,0,0,0,0)$.)

