Algebra Qualifying Exam - Fall 2019

1. Suppose p and q are primes with $p<q$. If $n \geq 0$ is an integer, then show that any finite group G of order $p q^{n}$ is solvable.
2. Let G be a finite group, $H \subset G$ a subgroup and S a Sylow p-subgroup of G.
(a) Show that the intersection of H with some conjugate of S is a Sylow p-subgroup of H.
(b) Give an example to show that $H \cap S$ need not be a Sylow p-subgroup of H.
3. Give an example of a field extension of degree 4 that has no intermediate subfield of degree 2 (hint: consider a Galois extension with group S_{4}).
4. Prove that the subset $\left\{\left(u^{3}, u^{2} v, u v^{2}, v^{3}\right), u, v \in \mathbb{C}\right\} \subset \mathbb{C}^{4}$ is algebraic.
5. Let k be a field.
(a) Prove that if $A, B \in M_{n}(k)$ are 3×3 matrices, then A and B are similar if and only if they have the characteristic and minimal polynomials.
(b) Show the statement in the preceding point may fail for 4×4 matrices.
6. If R is a left Noetherian ring, then show that every element $a \in A$ that admits a left inverse actually admits a 2 -sided inverse.
