## DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Fall 2018

Each problem is worth 20 points. There are 4 problems.

1. Consider the system of ODEs,

$$
\begin{align*}
x^{\prime} & =\mu x-y-\left(x^{2}+y^{2}\right) x  \tag{1}\\
y^{\prime} & =x+\mu y-\left(x^{2}+y^{2}\right) y
\end{align*}
$$

where $\mu \in(-1,1)$.
(a) Show that trajectories never leave the box $[-A, A] \times[-B, B]$ for suitably chosen $A$ and $B$.
(b) Show that for $\mu>0$ there exists a non-trivial closed trajectory $\Gamma$ in the plane.
(c) Describe the bifurcation that takes place as $\mu$ increases through $\mu=0$.
(d) Compute the approximate period of the closed cycle for $\mu=0.001$.
(e) Show that $\Gamma$ in part (b) is locally exponentially attracting, i.e. nearby trajectories decay exponentially toward $\Gamma$.
2. Consider the system

$$
\begin{aligned}
x^{\prime}(t) & =-y(t) z(t) \\
y^{\prime}(t) & =x(t) z(t) \\
3 z^{\prime}(t) & =-x(t) y(t) .
\end{aligned}
$$

(a) Show that the quantity $x^{2}(t)+4 y^{2}(t)+9 z^{2}(t)$ is conserved, i.e constant along orbits.
(b) Find all stationary points and determine their type and stability.
3. For the system

$$
\begin{aligned}
x^{\prime} & =3\left(\sin ^{2} t\right) x-3 y \\
y^{\prime} & =-\left(\sin ^{4} t\right) x-y
\end{aligned}
$$

(a) Show there is at least one solution $\psi(t)=(x(t), y(t))$ that satisfies $|\psi(t)| \rightarrow \infty$ as $t \rightarrow \infty$,
(b) Show there can be no solution $\phi(t)=(x(t), y(t))$ that satisfies $x\left(t_{0}\right)=x^{\prime}\left(t_{0}\right)=0$ for some $t_{0} \in \mathbb{R}$ except the identically zero solution.
4. For the system of

$$
\begin{aligned}
x^{\prime} & =2 x+5 y+5 x^{2}-4 y^{2} \\
y^{\prime} & =3 x+y-6 x^{2}+5 y^{2},
\end{aligned}
$$

(a) Show there is at least one non-identically zero solution $\psi(t)=(x(t), y(t))$ that satisfies $|\psi(t)| \rightarrow 0$.
(b) Is the origin asymptotically stable?

