DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Fall 2018

Each problem is worth 20 points. There are 4 problems.

1. Consider the system of ODEs,

$$\begin{aligned} x' &= \mu x - y - (x^2 + y^2)x, \\ y' &= x + \mu y - (x^2 + y^2)y, \end{aligned}$$
 (1)

where $\mu \in (-1, 1)$.

- (a) Show that trajectories never leave the box $[-A, A] \times [-B, B]$ for suitably chosen A and B.
- (b) Show that for $\mu > 0$ there exists a non-trivial closed trajectory Γ in the plane.
- (c) Describe the bifurcation that takes place as μ increases through $\mu = 0$.
- (d) Compute the approximate period of the closed cycle for $\mu = 0.001$.
- (e) Show that Γ in part (b) is locally *exponentially* attracting, i.e. nearby trajectories decay exponentially toward Γ .
- 2. Consider the system

$$x'(t) = -y(t)z(t)$$

$$y'(t) = x(t)z(t)$$

$$3z'(t) = -x(t)y(t).$$

(a) Show that the quantity $x^2(t) + 4y^2(t) + 9z^2(t)$ is conserved, i.e constant along orbits.

- (b) Find all stationary points and determine their type and stability.
- 3. For the system

$$\begin{aligned} x' &= 3(\sin^2 t)x - 3y \\ y' &= -(\sin^4 t)x - y, \end{aligned}$$

- (a) Show there is at least one solution $\psi(t) = (x(t), y(t))$ that satisfies $|\psi(t)| \to \infty$ as $t \to \infty$,
- (b) Show there can be no solution $\phi(t) = (x(t), y(t))$ that satisfies $x(t_0) = x'(t_0) = 0$ for some $t_0 \in \mathbb{R}$ except the identically zero solution.
- 4. For the system of

$$\begin{aligned} x' &= 2x + 5y + 5x^2 - 4y^2 \\ y' &= 3x + y - 6x^2 + 5y^2, \end{aligned}$$

- (a) Show there is at least one non-identically zero solution $\psi(t) = (x(t), y(t))$ that satisfies $|\psi(t)| \to 0$.
- (b) Is the origin asymptotically stable?