Partial credit will be awarded, but in the event that you can not fully solve a problem you should state clearly what it is you have done and what you have left out. Start each problem on a fresh sheet of paper and write on only one side of the paper.

1. Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded and let $g_{j} \in C(\partial \Omega)$ converge uniformly to $g \in C(\partial \Omega)$ (recall that this means that $\left.\lim _{j \rightarrow \infty} \sup _{x \in \partial \Omega}\left|g_{j}(x)-g(x)\right|\right)$. Let $u_{j} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be the solutions of

$$
\begin{aligned}
\Delta u_{j} & =0 \text { in } \Omega, \\
u_{j} & =g_{j} \text { on } \partial \Omega .
\end{aligned}
$$

Show that u_{j} converges uniformly to a function $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and that u solves

$$
\begin{aligned}
\Delta u & =0 \text { in } \Omega, \\
u & =g \text { on } \partial \Omega .
\end{aligned}
$$

2. Let $u_{0} \in C^{2}\left(B_{1}(0)\right), u_{1} \in C^{1}\left(B_{1}(0)\right), f \in C\left((0, T) \times B^{1}(0)\right)$. Show that the problem

$$
\begin{aligned}
\partial_{t t} u-\Delta u+u & =f \text { in }(0, T) \times B^{1}(0), \\
u(0, x) & =u_{0}(x), \\
\partial_{t} u(0, x) & =u_{1}(x), \\
u(t, x) & =0 \text { on }(0, T) \times \partial B_{1}(0),
\end{aligned}
$$

has at most one solution $u \in C^{2}\left([0, T] \times \overline{B_{1}(0)}\right)$.
3. Consider the equation

$$
\partial_{t} u+u \partial_{x} u=0
$$

on $(0, T) \times \mathbb{R}$. Show that a classical solution with initial data $u(0, x)=\frac{\pi}{2}-\arctan (x)$ can exist at most for a finite time.

