1. Let $x_1, \ldots, x_n \in \mathbb{R}^p$ be known vectors (all vectors are column vectors in this problem) with $p \leq n$, let $\beta \in \mathbb{R}^p$ be an unknown parameter vector, and let Y_1, \ldots, Y_n be independent Bernoulli random variables such that

$$P_{\beta}(Y_i = 1) = 1 - P_{\beta}(Y_i = 0) = \Phi(\mathbf{x}'_i \beta), \quad i = 1, \dots, n,$$
(1)

where Φ denotes the c.d.f. of the standard normal distribution and "prime" denotes transpose. This problem concerns using the EM algorithm to find the MLE of β from the data $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)'$.

(a) Show that if $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. standard normals and $W_i = x'_i \beta + \varepsilon_i, i = 1, \ldots, n$, then

$$Y_i = \mathbf{1}\{W_i > 0\}, \quad i = 1, \dots, n$$
 (2)

have the distribution (1). For the rest of this problem assume the Y_i are defined by (2) and observed but that the W_i and ε_i are unobserved.

(b) Show that the complete log-likelihood function $\ell_c(\beta)$ of W_1, \ldots, W_n , if they were observed, is given by

$$\ell_c(\boldsymbol{eta}) = -rac{1}{2}\sum_{i=1}^n (W_i - \boldsymbol{x}_i' \boldsymbol{eta})^2$$

up to additive constants.

(c) The E step of the EM algorithm involves computing

$$Q(\widetilde{\boldsymbol{\beta}}, \boldsymbol{\beta}) = E_{\boldsymbol{\beta}} \left[\ell_c(\widetilde{\boldsymbol{\beta}}) \middle| \boldsymbol{Y} \right].$$

Show that

$$E_{\boldsymbol{\beta}}\left[\left.\left(W_{i}-\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\right)^{2}\right|\boldsymbol{Y}\right]=E_{\boldsymbol{\beta}}\left[\left.\left(W_{i}-\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\right)^{2}\right|Y_{i}\right],\tag{3}$$

and, up to additive terms C, C' that don't depend on β , that

$$E_{\boldsymbol{\beta}}\left[\left.\left(W_{i}-\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\right)^{2}\right|Y_{i}=1\right]=\left(\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\right)^{2}-2\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\left(\boldsymbol{x}_{i}^{\prime}\boldsymbol{\beta}+\frac{\phi(\boldsymbol{x}_{i}^{\prime}\boldsymbol{\beta})}{\Phi(\boldsymbol{x}_{i}^{\prime}\boldsymbol{\beta})}\right)+C,\quad\text{and}\qquad(4)$$

$$E_{\boldsymbol{\beta}}\left[\left.\left(W_{i}-\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\right)^{2}\right|Y_{i}=0\right]=\left(\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\right)^{2}-2\boldsymbol{x}_{i}^{\prime}\widetilde{\boldsymbol{\beta}}\left(\boldsymbol{x}_{i}^{\prime}\boldsymbol{\beta}-\frac{\phi(\boldsymbol{x}_{i}^{\prime}\boldsymbol{\beta})}{\Phi(-\boldsymbol{x}_{i}^{\prime}\boldsymbol{\beta})}\right)+C^{\prime},$$
(5)

where ϕ is the standard normal density function. You don't have to explicitly find C, C'.

(d) Let X be the $(n \times p)$ matrix with rows x'_1, \ldots, x'_n , assumed to be of full rank p, and let $v = v(\beta)$ be the *n*-long vector with entries

$$v_i = \begin{cases} \phi(\boldsymbol{x}_i'\boldsymbol{\beta})/\Phi(\boldsymbol{x}_i'\boldsymbol{\beta}), & \text{if } Y_i = 1\\ -\phi(\boldsymbol{x}_i'\boldsymbol{\beta})/\Phi(-\boldsymbol{x}_i'\boldsymbol{\beta}), & \text{if } Y_i = 0 \end{cases}$$

Show that the recursion for the EM iterates $\{\beta^{(k)}\}$ given by maximizing $Q(\tilde{\beta}, \beta)$ over $\tilde{\beta}$ is

$$\boldsymbol{\beta}^{(k+1)} = \boldsymbol{\beta}^{(k)} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{v}(\boldsymbol{\beta}^{(k)}).$$
(6)

Hint: Write $Q(\widetilde{\beta}, \beta)$ in matrix notation using **X** and **v** and then maximize over $\widetilde{\beta}$.

2. Let $\theta \sim N(0,1)$ and, conditional on θ , let $Y_i \sim N(\theta,1), i = 1, 2, \cdots, n$ be i.i.d. Let $\overline{Y} = \sum_{i=1}^n Y_i/n$.

- (a) Compute the density function of \overline{Y} .
- (b) Compute the posterior distribution of θ given \overline{Y} .
- (c) Compute the conditional expectation $E[\theta|\overline{Y}]$, and determine the behavior of the posterior distribution of θ as $n \to \infty$.