Geometry and Topology Graduate Exam Fall 2018

Solve all 6 problems. Partial credit will be given to partial solutions.

Problem 1. Let $p: X \to X$ denote the universal cover of the space X, and let $Y \subset X$ be a path-connected subspace. Suppose that the preimage $p^{-1}(Y)$ is path connected. Show that, for an arbitrary base point $y_0 \in Y$, the homomorphism $i_*: \pi_1(Y; y_0) \to \pi_1(X; y_0)$ induced by the inclusion map $i: Y \to X$ is surjective.

Problem 2. Consider the Klein bottle

$$K = S^1 \times [0, 1] / \sim$$

where, if S^1 is the unit circle in the complex plane \mathbb{C} and if \overline{z} denotes the complex conjugate of $z \in S^1$, the equivalence relation ~ identifies each $(z, 1) \in S^1 \times \{1\}$ to $(\overline{z}, 0) \in S^1 \times \{0\}$. Compute all homology groups $H_n(K; \mathbb{Z}_4)$ with coefficients in the cyclic group \mathbb{Z}_4 of order 4.

Problem 3. Consider the $2n \times 2n$ matrix

$$J = \begin{pmatrix} 0_n & \mathbf{I}_n \\ -\mathbf{I}_n & 0_n \end{pmatrix}$$

where I_n denotes the identity matrix of order n, and where 0_n represents the square matrix of order n whose entries are all equal to 0. In the vector space $M_{2n}(\mathbb{R}) \cong \mathbb{R}^{4n^2}$ of $2n \times 2n$ matrices, set

$$\Sigma_n = \{A \in \mathcal{M}_{2n}(\mathbb{R}); AJA^{\mathsf{t}} = J\} = f^{-1}(J)$$

for the map $f: M_{2n}(\mathbb{R}) \to M_{2n}(\mathbb{R})$ defined by $f(A) = AJA^{t}$.

- **a.** Let $T_{I_{2n}}f: M_{2n}(\mathbb{R}) \to M_{2n}(\mathbb{R})$ denote the tangent map (= differential map) of f at the identity matrix $I_{2n} \in M_{2n}(\mathbb{R})$ where, since $M_{2n}(\mathbb{R})$ is a vector space, we use the canonical identification between the tangent space $T_{I_{2n}}M_{2n}(\mathbb{R})$ and $M_{2n}(\mathbb{R})$. Determine the dimension of the image of $T_{I_{2n}}f$.
- **b.** Show that there is a neighborhood U of I_{2n} in $M_{2n}(\mathbb{R})$ such that $\Sigma_n \cap U$ is a submanifold of $M_{2n}(\mathbb{R}) \cong \mathbb{R}^{4n^2}$. What is its dimension?

Problem 4. Let M be an m-dimensional submanifold of \mathbb{R}^n . Show that, if n > 2m + 1, there exists a hyperplane $H \subset \mathbb{R}^n$ such that the restriction of the orthogonal projection $\pi_H \colon \mathbb{R}^n \to H$ to M is injective. Possible hint: consider the map which associates the vector $\overrightarrow{PQ}/||\overrightarrow{PQ}||$ to each pair $(P,Q) \in M \times M$ with $P \neq Q$.

Problem 5. Let M be a compact, oriented, smooth manifold with boundary ∂M . Prove that there does not exist a map $F: M \to \partial M$ such that $F_{|\partial M}: \partial M \to \partial M$ is the identity map.

Possible hint: consider the inclusion map $i: \partial M \to M$, and use Stokes's theorem. **Problem 6.** Let $S^n \subset \mathbb{R}^{n+1}$ denote the unit sphere, and let $\omega \in \Omega^n(S^n)$ be the differential *n*-form given by the restriction of $x_{n+1}dx_1 \wedge \cdots \wedge dx_n \in \Omega^n(\mathbb{R}^{n+1})$ to S^n . Show that the class of ω in the de Rham cohomology $H^n_{dR}(S^n)$ is nontrivial, namely that ω is closed but not exact.