Geometry and Topology Graduate Exam Fall 2018

Solve all 6 problems. Partial credit will be given to partial solutions.
Problem 1. Let $p: \tilde{X} \rightarrow X$ denote the universal cover of the space X, and let $Y \subset X$ be a path-connected subspace. Suppose that the preimage $p^{-1}(Y)$ is path connected. Show that, for an arbitrary base point $y_{0} \in Y$, the homomorphism $i_{*}: \pi_{1}\left(Y ; y_{0}\right) \rightarrow \pi_{1}\left(X ; y_{0}\right)$ induced by the inclusion map $i: Y \rightarrow X$ is surjective.
Problem 2. Consider the Klein bottle

$$
K=S^{1} \times[0,1] / \sim
$$

where, if S^{1} is the unit circle in the complex plane \mathbb{C} and if \bar{z} denotes the complex conjugate of $z \in S^{1}$, the equivalence relation \sim identifies each $(z, 1) \in S^{1} \times\{1\}$ to $(\bar{z}, 0) \in S^{1} \times\{0\}$. Compute all homology groups $H_{n}\left(K ; \mathbb{Z}_{4}\right)$ with coefficients in the cyclic group \mathbb{Z}_{4} of order 4 .
Problem 3. Consider the $2 n \times 2 n$ matrix

$$
J=\left(\begin{array}{cc}
0_{n} & \mathrm{I}_{n} \\
-\mathrm{I}_{n} & 0_{n}
\end{array}\right)
$$

where I_{n} denotes the identity matrix of order n, and where 0_{n} represents the square matrix of order n whose entries are all equal to 0 . In the vector space $\mathrm{M}_{2 n}(\mathbb{R}) \cong$ $\mathbb{R}^{4 n^{2}}$ of $2 n \times 2 n$ matrices, set

$$
\Sigma_{n}=\left\{A \in \mathrm{M}_{2 n}(\mathbb{R}) ; A J A^{\mathrm{t}}=J\right\}=f^{-1}(J)
$$

for the map $f: \mathrm{M}_{2 n}(\mathbb{R}) \rightarrow \mathrm{M}_{2 n}(\mathbb{R})$ defined by $f(A)=A J A^{\mathrm{t}}$.
a. Let $T_{\mathrm{I}_{2 n}} f: \mathrm{M}_{2 n}(\mathbb{R}) \rightarrow \mathrm{M}_{2 n}(\mathbb{R})$ denote the tangent map (= differential map) of f at the identity matrix $\mathrm{I}_{2 n} \in \mathrm{M}_{2 n}(\mathbb{R})$ where, since $\mathrm{M}_{2 n}(\mathbb{R})$ is a vector space, we use the canonical identification between the tangent space $T_{\mathrm{I}_{2 n}} \mathrm{M}_{2 n}(\mathbb{R})$ and $\mathrm{M}_{2 n}(\mathbb{R})$. Determine the dimension of the image of $T_{\mathrm{I}_{2 n}} f$.
b. Show that there is a neighborhood U of $\mathrm{I}_{2 n}$ in $\mathrm{M}_{2 n}(\mathbb{R})$ such that $\Sigma_{n} \cap U$ is a submanifold of $\mathrm{M}_{2 n}(\mathbb{R}) \cong \mathbb{R}^{4 n^{2}}$. What is its dimension?

Problem 4. Let M be an m-dimensional submanifold of \mathbb{R}^{n}. Show that, if $n>2 m+1$, there exists a hyperplane $H \subset \mathbb{R}^{n}$ such that the restriction of the orthogonal projection $\pi_{H}: \mathbb{R}^{n} \rightarrow H$ to M is injective. Possible hint: consider the map which associates the vector $\overrightarrow{P Q} /\|\overrightarrow{P Q}\|$ to each pair $(P, Q) \in M \times M$ with $P \neq Q$.
Problem 5. Let M be a compact, oriented, smooth manifold with boundary ∂M. Prove that there does not exist a map $F: M \rightarrow \partial M$ such that $F_{\mid \partial M}: \partial M \rightarrow \partial M$ is the identity map.

Possible hint: consider the inclusion map $i: \partial M \rightarrow M$, and use Stokes's theorem.
Problem 6. Let $S^{n} \subset \mathbb{R}^{n+1}$ denote the unit sphere, and let $\omega \in \Omega^{n}\left(S^{n}\right)$ be the differential n-form given by the restriction of $x_{n+1} d x_{1} \wedge \cdots \wedge d x_{n} \in \Omega^{n}\left(\mathbb{R}^{n+1}\right)$ to S^{n}. Show that the class of ω in the de Rham cohomology $H_{\mathrm{dR}}^{n}\left(S^{n}\right)$ is nontrivial, namely that ω is closed but not exact.

