
Numerical Analysis Screening Examination  

Fall 2018-2019 

1. (Numerical methods for finding eigenvalues) Let A be a square 𝑛 × 𝑛 matrix with eigenvalue-

eigenvector pairs {(𝜆𝑖, 𝑢𝑖)}𝑖=1
𝑛  satisfying {𝑢𝑖}𝑖=1

𝑛 linearly independent and |𝜆1| > |𝜆2| ≥ ⋯ . ≥

|𝜆𝑛|.  Let 𝑥0 ∈ 𝐶𝑛 be given with 𝑥0 = ∑ 𝛼𝑖𝑢𝑖
𝑛
𝑖=0  and 𝛼1 ≠ 0.   For 𝑘 = 1,2, …, set 𝛽𝑘 =

𝑥𝑘−1
𝑇 𝑥𝑘 𝑥𝑘−1

𝑇 𝑥𝑘−1⁄ , where 𝑥𝑘 = 𝐴𝑥𝑘−1. 

a. Show that  𝛽𝑘 = 𝜆1 (1 + 𝑂(|𝜆2 𝜆1⁄ |𝑘)), as 𝑘 → ∞. 

(Recall that if ℎ > 0, 𝑟𝑘 = 𝑂(ℎ𝑘), as 𝑘 → ∞, if and only if there exists a positive integer 𝑘0 

and a positive constant 𝑀 such that |𝑟𝑘| ≤ 𝑀ℎ𝑘, for all 𝑘 > 𝑘0, or, equivalently if and only if  
|𝑟𝑘|

ℎ𝑘  is bounded for all positive integers 𝑘.) 

b. Show that if the matrix 𝐴 is symmetric, then 𝛽𝑘 = 𝜆1 (1 + 𝑂(|𝜆2 𝜆1⁄ |2𝑘)), as 𝑘 → ∞. 

c. Let 𝛼 be a given complex number.  Show how an iteration like the one given above can be   

used to find the eigenvalue of 𝐴 that is closest to 𝛼. 

 

 

2. (Iterative methods for linear systems) A square matrix 𝐴 is said to be power bounded if all the 

entries in 𝐴𝑚remain bounded as 𝑚 → ∞. 

a. Show that if ‖𝐴‖ < 1, where ‖ ‖ is some induced matrix norm, then 𝐴  is power bounded. 

b. Establish necessary and sufficient conditions on the spectrum of a diagonalizable matrix 𝐴 to 

be power bounded. 

c. For 𝜆 a complex number and 𝑘a nonnegative integer, let 𝐽𝑘(𝜆) denote the 𝑘 × 𝑘matrix with 

𝜆’s on the diagonal and 1’s on the first super diagonal, and show that 

𝐽𝑘(𝜆)𝑚 = ∑ (
𝑚

𝑚 − 𝑗) 𝜆𝑚−𝑗𝐽𝑘(0)𝑗

𝑘−1

𝑗=0

 

d. Find necessary and sufficient conditions for an arbitrary square matrix 𝐴 to be power 

bounded. 

 

 

3. (Least squares)  Consider the following least square minimization problem 

min
𝑥∈ℝ4

‖𝐴𝑥 − 𝑏‖2
2 

               where 

𝐴 = (
2 0
1 1
1 1

2 2
2 −2
2 −2

) , 𝑏 = (
2

−1
5

). 

a. Explain why the problem has a solution. 
b. Determine whether or not 𝑥0 = (1,1,0,0) is a solution. 
c. Determine whether or not 𝑥0 is the minimum norm solution to this problem. 
d. Find the minimum norm solution. 
 

Go on to page 2. 
 



 
4. (Direct methods for linear systems) 

a) Consider a block matrix 

𝐾 =  [
𝐸 𝐹
𝐺 𝐻

] 

where 𝐸, 𝐹, 𝐺, and 𝐻 are all square 𝑛 ×  𝑛 matrices.  Show that, in general,  
det(𝐾)  ≠ det(𝐸)det(𝐻) −  det(𝐹)det(𝐺) 

but if either 𝐹 or 𝐺 (or both) is the zero matrix (so 𝐾 is either block-lower or block-upper 
triangular) then  
                                                         det(𝐾) =  det(𝐸)det(𝐻). 

b) Suppose that 𝐴 is a non-singular 𝑛 ×  𝑛 matrix and 𝐵 is any 𝑛 ×  𝑛 matrix such that the 
2𝑛 ×  2𝑛 matrix 

𝐶 =  [
𝐴 𝐵
𝐵 𝐴

] 

is also non-singular.  By considering the matrix 

[
𝐼 0

−𝐵𝐴−1 𝐼
] [

𝐴 𝐵
𝐵 𝐴

] 

or otherwise, show that  
                                            det(𝐶) = [det(𝐴)]2det(𝐼 − 𝐴−1𝐵𝐴−1𝐵). 

c) Now suppose that 𝐴 and 𝐵 are any 𝑛 ×  𝑛 matrices such that the 2𝑛 ×  2𝑛 matrix 𝐶 
given in Part b is nonsingular.  Use Part a to show that both of the matrices  𝐴 + 𝐵 and 
𝐴 − 𝐵 must be non-singular. 

d) Consider the system of equations 𝐶𝑥 = 𝑏 where the matrix 𝐶is as given in Part c above.  

Let 𝑏 =  [
𝑏1

𝑏2
] where 𝑏1, 𝑏2 are in ℝ𝑛 and let 𝑦1 and 𝑦2 be the unique solutions to 

(𝐴 + 𝐵)𝑦1 = 𝑏1 + 𝑏2     and    (𝐴 − 𝐵)𝑦2 = 𝑏1 − 𝑏2 
guaranteed to exist by Part c above.  Show how to obtain the solution of 𝐶𝑥 = 𝑏 from 
𝑦1 and 𝑦2.  What is the numerical advantage of finding the solution of 𝐶𝑥 = 𝑏 in this 
way rather than finding it directly? 
 


