1. For known $\alpha > 0$ and unknown $\theta \in \mathbb{R}$, we observe the sequence X_1, \ldots, X_n of independent variables with distribution function

$$F(x;\theta) = \begin{cases} 0 & x \le \theta \\ (x-\theta)^{\alpha} & x \in (\theta, \theta+1] \\ 1 & x > \theta+1, \end{cases}$$

and consider the estimator of θ given by

$$\widehat{\theta} = \min\{X_1, \dots, X_n\}.$$

- a. Determine the distribution function of $\hat{\theta}$.
- b. Determine a non-trivial distribution for a random variable Y and an increasing sequence a_n of real numbers such that

$$a_n(\theta - \theta) \to_d Y.$$

- c. What rates of (distributional) convergence to θ are possible for the estimator $\hat{\theta}$ as α ranges over $(0, \infty)$?
- 2. Let X_1, \ldots, X_n be i.i.d. with the $N(\theta, \theta)$ distribution, for some $\theta > 0$.
 - (a) Find the MLE of θ .
 - (b) Show that the MLE is a consistent estimator of θ .
 - (c) Assume that n = 1.
 - i. Show that T(X) = |X| is a sufficient statistic for θ .
 - ii. Note that $\hat{\theta}(X) = X$ is an unbiased estimator of θ , but is not a function of T(X). Hence, it can be improved; apply the Rao-Blackwell theorem to find another estimator θ^* that is a function of T(X) and is unbiased for θ .