Geometry and Topology Graduate Exam

 Fall 2017Solve all SEVEN problems. Partial credit will be given to partial solutions.
Problem 1. Let M be an oriented compact m-dimensional manifold, and let $f: M \rightarrow \mathbb{R}^{m}$ be a smooth map. Show that, for almost every $y \in \mathbb{R}^{m}$ (meaning, for y in the complement of a set of measure 0), the preimage $f^{-1}(y)$ consists of an even number of points.

Problem 2.

The sides of an octagon are glued using the pattern below. Determine the fundamental group of the associated quotient space.

Problem 3. Let $p: \widetilde{X} \rightarrow X$ be a covering map with X path connected and locally path connected, and with $\pi_{1}\left(X ; x_{0}\right) \cong \mathbb{Z} / 5$. Show that, if the fiber $p^{-1}\left(x_{0}\right)$ consists of 4 points, the covering is trivial.
Problem 4. Consider the following two-dimensional distribution on \mathbb{R}^{3} :

$$
\mathcal{D}=\operatorname{ker}\left(2 d x-e^{y} d z\right)
$$

Is there a neighborhood U of $0 \in \mathbb{R}^{3}$, along with a coordinate system (w, s, t) on U, such that $\left.\mathcal{D}\right|_{U}=\operatorname{span}\left(\frac{\partial}{\partial w}, \frac{\partial}{\partial s}\right)$? Justify your answer (with a proof).
Problem 5. Show that the subset

$$
M=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} ; x_{1}^{2}+x_{2}^{2}=x_{3}^{2}+x_{4}^{2}\right\}
$$

is not a differentiable submanifold of \mathbb{R}^{4}.
Problem 6. Let X be the subspace of \mathbb{R}^{3} defined by

$$
X=\left\{(x, y, z) \in \mathbb{R}^{3}:\left(x^{2}+y^{2}-1\right)\left(x^{2}+z^{2}-\left(\frac{1}{2}\right)^{2}\right)=0,\right\}
$$

so that X is the union of two cylinders of radius 1 along the z-axis and a cylinder of radius $\frac{1}{2}$ along the y-axis. Determine the homology groups $H_{*}(X)$.

Problem 7. Consider the 2-form on $\mathbb{R}^{3} \backslash\{(0,0,0)\}$ given by

$$
\sigma=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}(x d y \wedge d z-y d x \wedge d z+z d x \wedge d y) .
$$

Show that σ is closed but not exact. (Possible hint: Integrate σ over the sphere S^{2}).

