Algebra Qualifying Exam - Fall 2017

1. Assume S is a commutative integral domain, and $R \subset S$ is a subring. Assume S is finitely generated as an R-module, i.e., there exist elements $s_{1}, \ldots, s_{n} \in S$ such that $S=s_{1} R+$ $s_{2} R+\cdots+s_{n} R$. Show that R is a field if and only if S is a field. Is the statement true if the assumption that S is an integral domain is dropped?
2. Suppose R is a commutative unital ring, $\mathfrak{p} \subset R$ is a prime ideal and M is a finitely generated R-module. Recall that the annihilator ideal $\operatorname{Ann}_{R}(M)$ consists of elements $r \in R$ such that $r m=0$ for all $m \in M$. Show the localized module $M_{\mathfrak{p}}$ is non-zero if and only if $\operatorname{Ann}_{R}(M) \subset \mathfrak{p}$.
3. Let $f(x)=x^{5}+1$. Describe the splitting field K of $f(x)$ over \mathbb{Q} and compute the Galois $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$.
4. Let α be the real positive 16th root of 3 and consider the field $F=\mathbb{Q}(\alpha)$ generated by α over the field of rational numbers. Observe that there is a chain of intermediate fields

$$
\mathbb{Q} \subset \mathbb{Q}\left(\alpha^{8}\right) \subset \mathbb{Q}\left(\alpha^{4}\right) \subset \mathbb{Q}\left(\alpha^{2}\right) \subset \mathbb{Q}(\alpha)=F .
$$

Compute the degrees of these intermediate field extensions and conclude they are all distinct. Show that every intermediate field K between \mathbb{Q} and F is one of the above (hint: consider the constant term of the minimal polynomial of α over K)
5. A finite group is said to be perfect if it has no nontrivial abelian homomorphic image. Show that a perfect group has no non-trivial solvable homomorphic image. Next, suppose that $H \subset G$ is a normal subgroup with G / H perfect. If $\theta: G \rightarrow S$ is a homomorphism from G to a solvable group S and if $N=\operatorname{ker} \theta$, show that $G=N H$ and deduce that $\theta(H)=\theta(G)$.
6. Let A be a finite-dimensional \mathbb{C}-algebra. Given $a \in A$, write L_{a} for the left-multiplication operator, i.e., $\mathrm{L}_{a}(b)=a b$. Define a map $(-,-): A \times A \rightarrow \mathbb{C}$ by means of the formula $(a, b):=\operatorname{Tr} \mathrm{L}_{a} \mathrm{~L}_{b}$.
(a) Show that $(-,-)$ is a symmetric bilinear form on A.
(b) If one defines the radical $\operatorname{Rad}(-,-)$ as $\{a \in A \mid(a, b)=0 \forall b \in A\}$, then show that $\operatorname{Rad}(-,-)$ is a two-sided ideal in A.
(c) Show that $\operatorname{Rad}(-,-)$ coincides with the Jacobson radical of A.
7. Suppose F is an algebraically closed field, V is a finite-dimensional F-vector space, and $A \in \operatorname{End}_{F}(V)$. Show that there exist polynomials $f, g \in F[x]$ such that i) $A=f(A)+g(A)$, ii) $f(A)$ is diagonalizable and $g(A)$ nilpotent, and iii) f and g both vanish at 0 .

