First Name:
LAST NAME:
Student ID Number:
Signature:

Problem 1 Consider the following 3×3 matrix:

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & \epsilon & \epsilon \\
0 & \epsilon & \epsilon+\epsilon^{2}
\end{array}\right)
$$

(a) Use the Gram-Schmidt orthogonalization method on the columns of matrix A to derive a QR-decomposition of A.
(b) Use the Householder QR-factorization method to perform the same task as (a).
(c) Based on your calculations in (a) and (b), determine which method would lead to a more accurate factorization on an actual computer and justify your reasoning.
(d) A graduate student programmed both techniques in Matlab and tested them for the case $\epsilon=10^{-10}$. He evaluated the norm of $A-Q * R$ in Matlab and found that the norm was equal to 0 for the Gran-Schmidt factorization and 4.6032×10^{-26} for the Householder factorization. Is this consistent with your conclusion in (c)? What other quantities would you suggest him to examine that may support your conclusion in (c)?

Name:

Name:

Name:
Problem 2. Let A be an $n \times n$ real-valued, symmetric positive definite matrix and $b \in \mathbb{R}^{n}$. Consider the following two-stage iterative procedure for solving the system of equations $A x=b$:

$$
\begin{aligned}
x_{n+\frac{1}{2}} & =x_{n}+\omega_{1}\left(b-A x_{n}\right) \\
x_{n+1} & =x_{n+\frac{1}{2}}+\omega_{2}\left(b-A x_{n+\frac{1}{2}}\right)
\end{aligned}
$$

(a) Let $e_{n}=x-x_{n}$ be the error between the n-th iterate x_{n} and the exact solution x. Find the matrix K such that $e_{n+1}=K e_{n}$.
(b) Find the eigenvalues of K in terms of the eigenvalues of A, ω_{1}, and ω_{2}.
(c) Show that ω_{1} and ω_{2} can be chosen so that the method converges with any initial condition. Express the rate of convergence in terms of λ_{M} and λ_{m} which correspond to the largest and smallest eigenvalues of A, respectively.

Name:

Name:

Name:
Problem 3. Consider a least square minimization problem:

$$
\begin{equation*}
\operatorname{minimize}\|A x-b\|_{2}^{2}, \quad x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, \tag{1}
\end{equation*}
$$

and a regularized form of the (1):

$$
\begin{equation*}
\operatorname{minimize}\|A x-b\|_{2}^{2}+\alpha\|x\|_{2}^{2}, \quad \alpha>0 . \tag{2}
\end{equation*}
$$

(a) State and justify a necessary and sufficient condition for a vector x_{0} to be a solution of (1) and determine whether or not this problem always has a unique solution?
(b) State and justify a necessary and sufficient condition for a vector x_{0} to be a solution of (2) and determine whether or not this problem always has a unique solution?
(c) Let $\mathcal{R}\left(A^{T}\right)$ be the range of A^{T} and let $\mathcal{N}(A)$ be the null space of A. Explain why a solution of (2) must be in $\mathcal{R}\left(A^{T}\right)$.
(d) Suggest a method for approximating a minimal norm solution of (1) using a sequence of solutions of (2) and justify your answer.

Name:

Names:
Problem 4. Let A be an $n \times n$ skew-Hermitian (i.e. $A^{H}=-A$) matrix.
(a) Show that $I+A$ is invertible.
(b) Show that $U=(I+A)^{-1}(I-A)$ is unitary.
(c) Show that if U is unitary with $-1 \notin \sigma(U)$, then there exists a skewHermetian matrix A such that $U=(I+A)^{-1}(I-A)$.
(d) Show that if B is an $n \times n$ normal matrix (i.e. $B^{H} B=B B^{H}$) then it is unitarily similar to a diagonal matrix.
(e) Let C be an $n \times n$ matrix with singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$. Show that if λ is an eigenvalue of C, then $|\lambda| \leq \sigma_{1}$ and that $|\operatorname{det}(C)|=$ $\prod_{i=1}^{n} \sigma_{i}$.

Name:

Name:

