ALGEBRA QUALIFYING EXAM FALL 2015

Work all of the problems. Justify the statements in your solutions by reference to specific results, as appropriate. Partial credit is awarded for partial solutions. The set of integers is *Z*, the set of rational numbers is *Q*, and set of the complex numbers is *C*. Hand in the exam with problems in numerical order.

- 1. If *M* is a maximal ideal in $Q[x_1, \ldots, x_n]$ show that there are only finitely many maximal ideals in $C[x_1, \ldots, x_n]$ that contain *M*.
- 2. Let *R* be a right Noetherian ring with 1. Prove that *R* has a *unique* maximal nilpotent ideal P(R). Argue that R[x] also has a unique maximal nilpotent ideal P(R[x]). Show that P(R[x]) = P(R)[x].
- 3. Up to isomorphism, describe the possible structures of any group of order 182 as a direct sum of cyclic groups, dihedral groups, other semi-direct products, symmetric groups, or matrix groups. (Note: 91 is not a prime!)
- 4. Let K = C(y) for an indeterminate y and let $p_1 < p_2 < \cdots < p_n$ be primes (in Z). Let $f(x) = (x^{p_1} - y) \cdots (x^{p_n} - y) \in K$ with splitting field L over K
 - a) Show each $x^{p_j} y$ is irreducible over *K*.
 - b) Describe the structure of *Gal*(*L/K*).
 - c) How many intermediate fields are between K and L?
- 5. In any finite ring *R* with 1 show that some element in *R* is not a sum of nilpotent elements. Note that in all $M_n(\mathbb{Z}/n\mathbb{Z})$ the identity matrix is a sum of nilpotent elements. (Hint: What is the trace of a nilpotent element in a matrix ring over a field?)
- 6. Let *R* be a commutative principal ideal domain.
 - (1) If *I* and *J* are ideals of *R*, show $R/I \otimes_R R/J \cong R/(I+J)$.
 - (2) If *V* and *W* are finitely generated *R* modules so that $V \otimes_R W = 0$, show that *V* and *W* are torsion modules whose annihilators in *R* are relatively prime.
- 7. Let $g(x) = x^{12} + 5x^6 2x^3 + 17 \in \mathbf{Q}[x]$ and *F* a splitting field of g(x) over \mathbf{Q} . Determine if $Gal(F/\mathbf{Q})$ is solvable.