Fall 2014 Math 541b Exam

1. (a) Let $q_{x, y}$ be a Markov transition function, and π_{x} a probability distribution on a finite state space S. Show that the Markov chain that accepts moves made according to $q_{x, y}$ with probability

$$
p_{x, y}=\min \left\{\frac{\pi_{y} q_{y, x}}{\pi_{x} q_{x, y}}, 1\right\}
$$

and otherwise remains at x, has stationary distribution π_{x}. Show that if $q_{x, y}$ and π_{x} are positive for all $x, y \in S$ then the chain so described has unique stationary distribution π_{x}.
(b) Let $f(y)$ and $g(y)$ be two probability mass functions, both positive on \mathbb{R}. With X_{1} generated according to g, consider the Markov chain X_{1}, X_{2}, \ldots that for at stage $n \geq 1$ generates an independent observation Y_{n} from density g, and accepts this value as the new state X_{n+1} with probability

$$
\min \left\{\frac{f\left(Y_{n}\right) g\left(X_{n}\right)}{f\left(X_{n}\right) g\left(Y_{n}\right)}, 1\right\}
$$

and otherwise sets X_{n+1} to be X_{n}. Prove that the chain converges in distribution to a random variable with distribution f.
(c) The accept/reject method. Let f and g be density functions on \mathbb{R} such that the support of f is a subset of the support of g, and suppose that there exists a constant M such that $f(x) \leq M g(x)$. Consider the procedure that generates a random variable with distribution g, an independent random variable with the uniform distribution U on $[0,1]$ and sets $Y=X$ when $U \leq f(X) / M g(X)$. Show that Y has density f.
2. Let f be a real valued function on \mathbb{R}^{n}, and $Z=f\left(X_{1}, \ldots, X_{n}\right)$ for X_{1}, \ldots, X_{n} independent random variables.
(a) With $E^{(i)}(\cdot)=E\left(\cdot \mid X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right)$ show the following version of the Efron-Stein inequality

$$
\begin{equation*}
\operatorname{Var}(Z) \leq E\left(\sum_{i=1}^{n}\left(Z-E^{(i)} Z\right)^{2}\right) \tag{1}
\end{equation*}
$$

Hint: With $E_{i}(\cdot)=E\left(\cdot \mid X_{1}, \ldots, X_{i}\right)$, show that

$$
Z-E Z=\sum_{i=1}^{n} \Delta_{i} \quad \text { where } \quad \Delta_{i}=E_{i} Z-E_{i-1} Z
$$

compute the variance of Z in this form, use properties of conditional expectation such as $E_{i}\left(E^{(i)}(\cdot)\right)=E_{i-1}(\cdot)$, and (conditional) Jensens' inequality.
(b) Letting $\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)$ be an independent copy of $\left(X_{1}, \ldots, X_{n}\right)$, with

$$
Z_{i}^{\prime}=f\left(X_{1}, \ldots, X_{i-1}, X_{i}^{\prime}, X_{i+1}, \ldots, X_{n}\right)
$$

show that

$$
\operatorname{Var}(Z) \leq \frac{1}{2} E\left(\sum_{i=1}^{n}\left(Z-Z_{i}^{\prime}\right)^{2}\right)
$$

Hint: Express the right hand side of (1) in terms of conditional variances, and justify and use the conditional version of the fact that if X and Y are independent and have the same distribution then the variance of X can be expresses in terms of $E(X-Y)^{2}$.

