Fall 2014 Math 541a Exam

1. Let p, q be values in $[0,1]$ and $\alpha \in(0,1]$. Assume α and q known, and that p is an unknown parameter we would like to estimate. A coin is tossed n times, resulting in the sequence of zero one valued random variables X_{1}, \ldots, X_{n}. At each toss, independently of all other tosses, the coin has probability p of success with probability α, and probability q of success with probability $1-\alpha$.
(a) Write out the probability function of the observed sequence, and compute the maximum likelihood estimate \widehat{p} of p, when p is considered a parameter over all of \mathbb{R}. Verify that when $\alpha=1$ one recovers the standard estimator of the unknown probability.
(b) Show \widehat{p} is unbiased, and calculate its variance.
(c) Calculate the the information bound for p, and determine if it is achieved by \widehat{p}.
(d) If one of the other parameters is unknown, can p still be estimated consistently?
2. Let $\mathbf{X} \in \mathbb{R}^{n}$ be distributed according the density or mass function $p(\mathbf{x} ; \theta)$ for $\theta \in \Theta \subset \mathbb{R}^{d}$.
(a) State the definition for $T(\mathbf{X})$ to be sufficient for θ.
(b) Prove that if the (discrete) mass functions $p(\mathbf{x} ; \theta)$ can be factored as $h(\mathbf{x}) g(T(\mathbf{x}), \theta)$ for some functions h and g, then $T(\mathbf{X})$ is sufficient for θ.
(c) Let X_{1}, \ldots, X_{n} be independent with the Cauchy distribution $\mathcal{C}(\theta), \theta \in$ \mathbb{R} given by

$$
p(x ; \theta)=\frac{1}{\pi\left(1+(x-\theta)^{2}\right)} .
$$

Prove that the unordered sample $S=\left\{X_{1}, \ldots, X_{n}\right\}$ can be determined from any $T(\mathbf{X})$ sufficient for θ.(Hint: Produce a polynomial from which S can be determined).

