Preliminary Exam in Numerical Analysis Fall 2014

Instructions The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems.

1. Linear systems

- (a) Let A be an $n \times n$ matrix, B be an $n \times m$ matrix, C be an $m \times n$ matrix, and let D be an $m \times m$ matrix with the matrices A and $D - CA^{-1}B$ nonsingular. Show that the partitioned $(n + m) \times (n + m)$ matrix $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ is nonsingular and find an explicit formula for its inverse.
- (b) How many multiplications would be needed to compute M^{-1} if you do <u>not</u> take advantage of its special structure.
- (c) How many multiplications would be needed to compute M^{-1} if you do take advantage of its special structure (i.e. using the formulas you derived in part (a)).

2. Least squares

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, with $m \le n$ and rank A = m. Let $x_0 \in \mathbb{R}^n$ and consider the constrained optimization problem given by

$$\min ||x - x_0||,$$

subject to Ax = b, where the norm in the above expression is the Euclidean norm on \mathbb{R}^n . Show that this problem has a unique solution given by

$$x^* = A^T (AA^T)^{-1}b + (I_n - A^T (AA^T)^{-1}A)x_0,$$

where I_n is the $n \times n$ identity matrix.

3. Iterative Methods

Consider the following matrix

$$A = \begin{bmatrix} -2 & \frac{1}{2} \\ -\frac{1}{2} & -2 \end{bmatrix}.$$

(a) Find a range for the real parameter ω such that Richardson's method for the solution of the linear system Ax = b,

$$x^{k+1} = x^k - \omega (Ax^k - b)$$

converges for any initial guess x^0 .

(b) Find an optimal value for ω and justify your answer.

4. Computation of Eigenvalues and Eigenvectors

Consider the following matrix

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 + \varepsilon \end{bmatrix}.$$

- (a) Find a non-singular matrix $T(\varepsilon)$ such that the matrix $T^{-1}(\varepsilon)AT(\varepsilon)$ is in Jordan canonical form.
- (b) Find the limit of $||T(\varepsilon)||$ as ε tends toward zero.
- (c) Explain what this implies with regard to using the LR or QR methods to compute the eigenvalues of a matrix whose Jordan canonical form contains a Jordan block of size larger than 1.