## Algebra Exam September 2014

Show your work. Be as clear as possible. Do all problems.
Hand in solutions in numerical order.

1. Let $G$ be a group of order 56 having at least 7 elements of order 7 . Let $S$ be a Sylow 2-subgroup of $G$.
(a) Prove that $S$ is normal in $G$ and $S=C_{G}(S)$.
(b) Describe the possible structures of $G$ up to isomorphism. (Hint: How does an element of order 7 act on the elements of $S$ ?)
2. Show that a finite ring with no nonzero nilpotent elements is commutative.
3. If $R=M_{n}(\mathbb{Z})$, and $A$ is an additive subgroup of $R$, show that as additive subgroups $[R: A]$ is finite if and only if $R \otimes_{\mathbb{Z}} \mathbb{Q}=A \otimes_{\mathbb{Z}} \mathbb{Q}$.
4. Let $R$ be a commutative ring with $1, n$ a positive integer and $A_{1}, \ldots A_{k} \in$ $M_{n}(R)$. Show that there is a noetherian subring $S$ of $R$ containing 1 with all the $A_{i} \in M_{n}(S)$.
5. Let $R=\mathbb{C}[x, y]$. Show that there exists a positive integer $m$ such that $\left((x+y)\left(x^{2}+y^{4}-2\right)\right)^{m}$ is in the ideal $\left(x^{3}+y^{2}, y^{3}+x y\right)$.
6. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree $n \geq 5$. Let $L$ be the splitting field of $f$ and let $\alpha \in L$ be a zero of $f$. Given that $[L: Q]=n!$, prove that $\left.\mathbb{Q}] \alpha^{4}\right]=\mathbb{Q}[\alpha]$.
