Complex analysis, Graduate Exam Fall 2006

Answer all four questions. Partial credit will be given to partial solutions.

1. Let a be a real number with $a>e$. Show that the equation $e^{z}=a z^{n}$ has n solutions inside the unit circle.
2. Find the Fourier transform $\hat{f}(\omega)$ of the function $f(x)=\frac{1}{1+x^{2}}, x \in \mathbb{R}$,

$$
\hat{f}(\omega)=\int_{-\infty}^{\infty} \frac{e^{-i \omega x}}{1+x^{2}} d x
$$

3. Fix $\tau \in \mathbb{C}$ with non-zero imaginary part. Let $f(z), z \in \mathbb{C}$ be a non-constant meromorphic function such that $f(z)=f(z+m+n \tau)$ for all $m, n \in \mathbb{Z}$ (such functions are called doubly periodic). Show that f has infinitely many singularities.
4. Let $f(z)$ be a one to one conformal map from the unit disk to a square with center 0 such that $f(0)=0$. Show that $f(i z)=i f(z)$. Show also that if $f(z)$ is given by the power series $f(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$ then $c_{n}=0$ for all n such that $n-1$ is not divisible by 4 .
