ALGEBRA QUALIFYING EXAM
 September, 2006

1. (a) Find the number of Sylow p-subgroups of the symmetric group S_{p}. Here p is a prime.
(b) Use (a) to prove that

$$
(p-1)!+1 \equiv 0 \bmod p
$$

2. Let G be a finite solvable group and H a minimal (non-trivial) normal subgroup. Show H is isomorphic to a direct sum of cyclic groups of order p, for some prime p. (Hint: First show that the commutator subgroup H^{\prime} of H is $\{e\}$.)
3. Let $m_{1}, m_{2}, \ldots, m_{n}$ be positive integers which are pairwise relatively prime (that is, $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for all $i \neq j$).
(a) Show that $F:=\mathbb{Q}\left(\sqrt{m_{1}}+\sqrt{m_{2}}+\cdots+\sqrt{m_{n}}\right)=\mathbb{Q}\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \ldots, \sqrt{m_{n}}\right)$. (Hint: induction.)
(b) Show that $F=\mathbb{Q}\left(\sqrt{m_{1}}+\sqrt{m_{2}}+\cdots+\sqrt{m_{n}}\right)$ is Galois over \mathbb{Q}. What is its Galois group?
4. Let k be a field, let R be a commutative k-algebra, and let $S=M_{n}(R)$ be all $n \times n$-matrices with entries in R. Choose $A_{1}, \ldots, A_{m} \in S$. Show that there exists a (left) Noetherian k-subalgebra S_{0} of S which contains all of the matrices A_{i}. (Hint: Consider the subalgebra $R_{0} \subset R$ generated by all entries of $A_{1}, \ldots, A_{m} \in S$.)
5. Let $R=\mathbb{C}[x, y, z]$, let $I=\left(x^{2} z^{3}-y^{2} z+x y z-x^{2} y\right)$ be an ideal of R, and define $S=R / I$.
(a) Prove that the polynomial $x^{2} z^{3}-y^{2} z+x y z-x^{2} y$ is irreducible in R. (Hint: consider it as an element of $\mathbb{C}[x, y][z]$.)
(b) Show that S is a Noetherian integral domain.
(c) Prove that in S the intersection of all maximal ideals is $\{0\}$.
6. Let k be a finite field and let R be a finite dimensional semi-simple k-algebra such that for all $r \in R$, there exists a positive integer $n=n(r)>0$ such that $r^{n(r)}$ is in the center of R. Prove that R is commutative.
7. Let M be a finitely generated \mathbb{Z}-module with torsion submodule $T(M)$.
(a) Justify: $M / T(M)$ is a free \mathbb{Z}-module.

For parts (b) and (c), set $r(M):=\operatorname{rank}(M / T(M))$.
(b) Show that $r(M)=\operatorname{dim}_{\mathbb{Q}}\left(M \otimes_{\mathbb{Z}} \mathbb{Q}\right)$.
(c) Assume that

$$
0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0
$$

is an exact sequence of \mathbb{Z}-modules. Show that

$$
r(N)=r(M)+r(P)
$$

