DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Spring 2010

The exam has six problems.

1. Consider the product space $\mathbb{R}^{n} \times \mathbb{R}$ and let $P: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ be projection onto the second factor, $P(x, t)=t$. For two t values, $t_{1}<t_{2}$ define the "copies" of \mathbb{R}^{n}, $X=P^{-1}\left(t_{1}\right)$ and $Y=P^{-1}\left(t_{2}\right)$ and the mapping

$$
T: X \rightarrow Y \quad \text { where } \quad y=T(x)=\phi\left(t_{2}, t_{1}, x\right)
$$

where $\phi\left(t_{2}, t_{1}, x\right)$ is the solution $\phi\left(t, t_{1}, x\right)$ of $y^{\prime}=f(t, y), \quad y\left(t_{1}\right)=x$, evaluated at t_{2}. Assume that $f \in C^{1}$ and the divergence,

$$
\operatorname{div} f \doteq \frac{\partial f_{1}}{\partial y_{1}}+\frac{\partial f_{2}}{\partial y_{2}}+\cdots+\frac{\partial f_{n}}{\partial y_{n}}=0
$$

Show (1) T is a diffeomorphism and (2) T is (Borel) measure preserving. Note: Let (X, \mathcal{B}, μ) be a measurable space. Then $h: X \rightarrow X$ is measure preserving if $\mu\left(h^{-1}(U)\right)=\mu(U)$ for each $U \in \mathcal{B}$. If h is invertible then h is measure preserving if h^{-1} is measure preserving, i.e. if $\mu(h(U))=\mu(U)$ for each $U \in \mathcal{B}$.
2. Let

$$
\frac{d x}{d t}=f(x), \quad f \in C^{1}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)
$$

and suppose $x=\phi(t)$ is the solution that satisfies $\|\phi(0)\|=2$ and $\|\phi(t)\| \leq 1$ for $t \geq t_{0}>0$.
(a) Prove there is a subset of the unit ball that is invariant under the flow generated by the ODE.
(b) Prove there is a solution $\psi(t)$ that satisfies $\left\|\psi(0)-\psi\left(t_{n}\right)\right\| \rightarrow 0$ for some sequence $t_{n} \rightarrow \infty$.
3. Consider the planar system

$$
\begin{aligned}
r^{\prime} & =r(1-r) \\
\theta^{\prime} & =r \sin ^{2}\left(\frac{\theta}{2}\right)
\end{aligned}
$$

(a) Find the α and ω limit sets of all points in the plane.
(b) Is the stationary point $(r, \theta)=(1,0)$ asymptotically stable?
4. Consider the wave equation in \mathbb{R}^{3}

$$
\begin{align*}
& u_{t t}-\Delta u=0 \quad \text { for } x \in \mathbb{R}^{3}, t>0 \tag{1}\\
& u(x, 0)=0 \tag{2}\\
& u_{t}(x, 0)=g(x) \tag{3}
\end{align*}
$$

where $g \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$. Prove that there exists a constant C depending only on the given data such that

$$
\sup _{x \in \mathbb{R}^{3}}|u(x, t)| \leq \frac{C}{t}, \quad t>0 .
$$

5. Use the method of characteristics to solve the following partial differential equation:

$$
\begin{equation*}
\frac{\partial u}{\partial t}-u \frac{\partial u}{\partial x}=3 u, \quad u(x, 0)=u_{0}(x) . \tag{4}
\end{equation*}
$$

6. Let $u(x)$ be harmonic for $x \in \mathbb{R}^{3}$. Suppose that $\nabla u \in L^{2}\left(\mathbb{R}^{3}\right)$. Prove that u is a constant.
