DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Fall 2009

1. Consider the initial value problem for $x, y \in \mathbb{R}$,

$$
\frac{d y}{d x}=2(2+x)\left(1+y^{2}\right), \quad y(0)=0
$$

Determine the value of x, if one exists, at which the solution attains its minimum value.
Hint: Solve the equation and study the maximal interval of existence
2. Consider the systems, for $t \in \mathbb{R}^{+}$,

$$
\begin{align*}
& \frac{d y}{d t}=A(t) y, \quad \text { and } \tag{1}\\
& \frac{d y}{d t}=[A(t)+B(t)] y \tag{2}
\end{align*}
$$

Assume

$$
\int_{0}^{\infty}\|B(t)\| d t<\infty, \quad \text { and } \quad \liminf _{t \rightarrow \infty} \int_{0}^{t} \operatorname{tr} A(s) d s>-\infty
$$

If all the solutions of (1) are bounded on \mathbb{R}^{+}show all the solutions of (2) are bounded on \mathbb{R}^{+}.
3. Let $I=(-\infty, \infty)$ and $\Phi(t)=\left(\begin{array}{ccc}t^{2} & 1 & 0 \\ t+1 & t^{2}+1 & 2 \\ t+4 & 0 & t+2\end{array}\right)$. Prove that Φ cannot be a fundamental matrix for a linear homogeneous system $x^{\prime}=A(t) x$ defined on all of I. What happens to the above conclusion when you are allowed to choose the interval $I=(a, b), a<b$?
4. Prove that if $u \in W^{1, p}(0,1)$ for some $1<p<\infty$, then

$$
|u(x)-u(y)| \leq|x-y|^{1-\frac{1}{p}}\left(\int_{0}^{1}\left|u^{\prime}(t)\right|^{p} d t\right)^{1 / p}
$$

for a.e. $x, y \in[0,1]$.
5. Solve the Cauchy problem

$$
u_{x} u_{y}=u, \quad \text { with } u(0, y)=y^{2}
$$

6. Let $u(x, t)$ be a solution of the one-dimensional heat equation $u_{t}=u_{x x}$ with initial data

$$
u(x, 0)=\left\{\begin{array}{lll}
1 & \text { for } & x>0 \\
0 & \text { for } & x<0
\end{array}\right.
$$

Find

$$
\begin{aligned}
a & =\lim _{t \rightarrow \infty} u(x, t) \\
b & =\lim _{x \rightarrow \infty} u(x, t) \\
c & =\lim _{x \rightarrow-\infty} u(x, t)
\end{aligned}
$$

