DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Fall 2009

1. Consider the initial value problem for $x, y \in \mathbb{R}$,

$$\frac{dy}{dx} = 2(2+x)(1+y^2), \qquad y(0) = 0.$$

Determine the value of x, if one exists, at which the solution attains its minimum value. Hint: Solve the equation and study the maximal interval of existence

2. Consider the systems, for $t \in \mathbb{R}^+$,

$$\frac{dy}{dt} = A(t)y, \quad \text{and} \quad (1)$$

$$\frac{dy}{dt} = [A(t) + B(t)]y.$$
(2)

Assume

$$\int_0^\infty \|B(t)\| dt < \infty, \qquad ext{and} \qquad \liminf_{t o \infty} \int_0^t tr A(s) ds > -\infty.$$

If all the solutions of (1) are bounded on \mathbb{R}^+ show all the solutions of (2) are bounded on \mathbb{R}^+ .

3. Let $I = (-\infty, \infty)$ and $\Phi(t) = \begin{pmatrix} t^2 & 1 & 0 \\ t+1 & t^2+1 & 2 \\ t+4 & 0 & t+2 \end{pmatrix}$. Prove that Φ cannot be a

fundamental matrix for a linear homogeneous system x' = A(t)x defined on all of *I*. What happens to the above conclusion when you are allowed to choose the interval I = (a, b), a < b?

4. Prove that if $u \in W^{1,p}(0,1)$ for some 1 , then

$$|u(x) - u(y)| \le |x - y|^{1 - \frac{1}{p}} \left(\int_0^1 |u'(t)|^p \, dt \right)^{1/p}$$

for a.e. $x, y \in [0, 1]$.

5. Solve the Cauchy problem

$$u_x u_y = u$$
, with $u(0, y) = y^2$.

6. Let u(x,t) be a solution of the one-dimensional heat equation $u_t = u_{xx}$ with initial data

$$u(x,0) = \begin{cases} 1 & \text{for } x > 0\\ 0 & \text{for } x < 0. \end{cases}$$
$$a = \lim_{t \to \infty} u(x,t)$$
$$b = \lim_{x \to \infty} u(x,t)$$
$$c = \lim_{x \to -\infty} u(x,t)$$

Find