DIFFERENTIAL EQUATIONS QUALIFYING EXAM–Spring 2011

1. Brouwer's Fixed Point Theorem tells us that if

$$D = \{ x \in \mathbb{R}^2 : x_1^2 + x_2^2 \le 1 \}$$

and $f: D \to D$ is continuous then f has a fixed point in D. Obtain this same conclusion for $f \in C^1$ by finding an equilibrium for the vector field g(x) = f(x) - x.

- 2. Consider the autonomous system x'(t) = f(x(t)), where $x = (x_1, \ldots, x_n)$ and $f = (f_1, \ldots, f_n)$ is a smooth vectorfield such that $\sum_k x_k f_k(x) < 0$ for all $x \neq 0$. Show that $x(t) \to 0$ as $t \to \infty$ for all solutions of the system (and all initial data x(0)).
- 3. Let

$$f(x,y) = \left(\begin{array}{c} ax - bxy - ex^2\\ -cy + dxy - fy^2 \end{array}\right).$$

where a, b, c, d, e, f > 0. Show that the system (x', y') = f(x, y) has no closed orbit in the first quadrant. (Hint: Show that the divergence of $\frac{1}{xy}f(x, y)$ is non-zero.)

- 4. Let Ω be an open subset of \mathbb{R}^n . Suppose $u \in C^2(\overline{\Omega})$ is a solution of the equation $\Delta u = u^3$ with the property that $|\nabla u(x)| \leq 1$ for each $x \in \partial \Omega$. Prove that $|\nabla u(x)| \leq 1$ for all $x \in \Omega$.
- 5. Let Ω be an open bounded subset of \mathbb{R}^n , and assume $u(x,t) \geq 0$ is a function in $C^2(\bar{\Omega} \times [0,\infty)$ which solves the heat equation with heat loss due to radiation

$$u_t - \Delta u = -u^4$$

with the boundary condition u = 0 on $\partial \Omega$. Prove that we can find a constant C such that

$$E(1) = \int_{\Omega} u^2(x, 1) \, dx \le C$$

regardless of the initial value u(x, 0).

6. Solve the Cauchy problem

$$x\frac{\partial u}{\partial x} + yu\frac{\partial u}{\partial y} = -xy$$
$$u = 5 \quad \text{on} \quad xy = 1, x, y > 0$$