DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Spring 2011

1. Brouwer's Fixed Point Theorem tells us that if

$$
D=\left\{x \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2} \leq 1\right\}
$$

and $f: D \rightarrow D$ is continuous then f has a fixed point in D. Obtain this same conclusion for $f \in C^{1}$ by finding an equilibrium for the vector field $g(x)=f(x)-x$.
2. Consider the autonomous system $x^{\prime}(t)=f(x(t))$, where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $f=$ $\left(f_{1}, \ldots, f_{n}\right)$ is a smooth vectorfield such that $\sum_{k} x_{k} f_{k}(x)<0$ for all $x \neq 0$. Show that $x(t) \rightarrow 0$ as $t \rightarrow \infty$ for all solutions of the system (and all initial data $x(0)$).
3. Let

$$
f(x, y)=\binom{a x-b x y-e x^{2}}{-c y+d x y-f y^{2}}
$$

where $a, b, c, d, e, f>0$. Show that the system $\left(x^{\prime}, y^{\prime}\right)=f(x, y)$ has no closed orbit in the first quadrant. (Hint: Show that the divergence of $\frac{1}{x y} f(x, y)$ is non-zero.)
4. Let Ω be an open subset of \mathbb{R}^{n}. Suppose $u \in C^{2}(\bar{\Omega})$ is a solution of the equation $\Delta u=u^{3}$ with the property that $|\nabla u(x)| \leq 1$ for each $x \in \partial \Omega$. Prove that $|\nabla u(x)| \leq 1$ for all $x \in \Omega$.
5. Let Ω be an open bounded subset of \mathbb{R}^{n}, and assume $u(x, t) \geq 0$ is a function in $C^{2}(\bar{\Omega} \times[0, \infty)$ which solves the heat equation with heat loss due to radiation

$$
u_{t}-\Delta u=-u^{4}
$$

with the boundary condition $u=0$ on $\partial \Omega$. Prove that we can find a constant C such that

$$
E(1)=\int_{\Omega} u^{2}(x, 1) d x \leq C
$$

regardless of the initial value $u(x, 0)$.
6. Solve the Cauchy problem

$$
\begin{gathered}
x \frac{\partial u}{\partial x}+y u \frac{\partial u}{\partial y}=-x y \\
u=5 \quad \text { on } \quad x y=1, x, y>0
\end{gathered}
$$

