Spring 2010 Math 541b Exam

1. Consider the multinomial model with cell probabilities $p=\left(p_{1}, p_{2}, \cdots, p_{m}\right) \in$ Ω, in which $\sum_{i=1}^{m} p_{i}=1, p_{i}>0$, for $i=1, \cdots, m$. And the count data generated from a multinominal is denoted by $x=\left(x_{1}, x_{2}, \cdots, x_{m}\right)$, where $\sum_{i=1}^{m} x_{i}=n$. Under the null hypothesis H_{0}, the vector of cell probabilities p is specified by $p=p(\theta) \in \omega_{0}$, where $\theta \in \Theta$. One example is the parameter specification in the Pearson's chi-square test of independence. In the alternative model H_{A}, the parameter vector $p \in \Omega-\omega_{0}$.
(a) Denote $\hat{p}_{i}=x_{i} / n$, and the maximum likelihood estimate of θ under H_{0} by $\hat{\theta}$. Show that the log-likelihood ratio test statistic is

$$
-2 \log \Lambda=2 \sum_{i=1}^{m} O_{i} \log \left(\frac{O_{i}}{E_{i}}\right)
$$

where $O_{i}=n \hat{p}_{i}$ and $E_{i}=n p(\hat{\theta})$.
(b) Assume that $\operatorname{dim} \omega_{0}=k$, what is the asymptotic distribution of the likelihood ratio test statistic as $n \longrightarrow+\infty$.
(c) What is the Pearson test statistic in this general scenario?
(d) Show that the likelihood ratio test statistic and the Pearson test statistic are approximately equivalent. (Hint: You may use a Taylor expansion.)
2. Consider the Bernoulli-Laplace model in which there are two urns, each containing M balls, and of these $2 M$ total balls M are black and M are white. Suppose at each time step, one ball is chosen from each urn at random and they are interchanged. Let $X_{n} \in\{0, \ldots, M\}$ be the number of black balls in the first urn just after the nth step.
(a) Find the transition probabilities of the Markov Chain X_{n}.
(b) Find the stationary distribution of X_{n}. Prove stationarity.

