Fall 2010 Math 541b Exam

- 1. Let p(x) and q(x) be two distinct density functions that are positive on \mathbb{R} .
 - (a) We define the Kullack Leibler divergence as

$$D(p||q) = E_p \log \frac{p(x)}{q(x)},$$

where E_p means taking the expectation under density p(x). Prove that D(p||q) is strictly positive.

(b) Let X_1, \ldots, X_n be i.i.d. with density

$$p(x;\theta) = \begin{cases} p(x) & \theta = 0\\ q(x) & \theta = 1. \end{cases}$$

For some fixed $\delta > 0$, consider the test $H_0: \theta = 0$ versus $H_1: \theta = 1$ which has rejection region A_n given by

$$A_n = \{ (X_1, \dots, X_n) : e^{n(D(p||q) - \delta)} \le \prod_{i=1}^n \frac{p(X_i)}{q(X_i)} \le e^{n(D(p||q) + \delta)} \}^c.$$

Prove that the sequence of Type I errors $P(A_n)$ tend to zero as $n \to \infty$, where $P(\cdot)$ is the probability under p(x).

(c) With $Q(\cdot)$ the probability under q(x), prove that the Type II errors $Q(A_n^c)$ satisfy

$$\lim_{\delta \to 0} \lim_{n \to \infty} \frac{1}{n} \log Q(A_n^c) = -D(p||q).$$

- 2. Suppose that X follows a Poisson distribution $\mathcal{P}(\theta), \theta > 0$. Let θ have a Gamma $\Gamma(p, \lambda)$ distribution.
 - (a) Show that the posterior distribution is $\Gamma(p+x, 1+\lambda)$
 - (b) Show that if we take the loss function as $l(\theta, a) = (a \theta)^2$, then the Bayes estimate of θ is $(p + x)/(1 + \lambda)$.
 - (c) Find the Bayes estimate if the loss function is $l(\theta, a) = (a \theta)^2/\theta$