Fall 2009 Math 541b Exam

1. With $\mathbf{X}_1, \ldots, \mathbf{X}_n$ i.i.d. with density $p(\mathbf{x}; \theta), \theta \in \mathbb{R}^d$, consider the usual likelihood ratio test for $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ based on

$$\Lambda_n = \frac{\sup_{\theta \in \Theta_0} \prod_{i=1}^n p(\mathbf{x}_i; \theta)}{\sup_{\theta \in \Theta_0 \cup \Theta_1} \prod_{i=1}^n p(\mathbf{x}_i; \theta)}$$

Let

$$\lambda_n = -2\log\Lambda_n.$$

(a) Under sufficient regularity there exists Y such that,

$$\lambda_n \to_d Y$$
 as $n \to \infty$.

State the distribution of Y.

- (b) In parts b) and c) assume θ = (θ₁, θ₂), and let p(**x**; θ) be the density of the bivariate normal **X** whose components have unknown mean (θ₁, θ₂), known variances σ₁², σ₂² and known correlation coefficient ρ ∈ (-1, 1). For testing with Θ₀ = {θ₁ = 0, θ₂ = 0} and Θ₁ ∪ Θ₂ = ℝ², verify that the distribution of λ is as specified in part a).
- (c) For testing with $\Theta_0 = \{\theta_1 = 0, \theta_2 = 0\}$ and $\Theta_1 \cup \Theta_2 = \{\theta_1 > 0, \theta_2 \in \mathbb{R}\}$, determine the distribution of λ . Compare this distribution to the one in part b), and explain.
- (d) State whether we can generalize the distributional result in c) asymptotically under the regularity assumed for the convergence in a), and justify your answer.
- 2. Let X_1, \ldots, X_n be i.i.d. from the exponential distribution $\mathcal{E}(a, b)$ with density

$$b^{-1} \exp\{-(x-a)/b\} \cdot \mathbf{1}\{x \ge a\}, \quad -\infty < a < \infty, \quad b > 0,$$

and let $X_{(1)} = \min\{X_1, \dots, X_n\}.$

(a) Determine the uniformly most powerful (UMP) test for testing $H_0: a = a_0$ vs. $H_1: a \neq a_0$ when b is assumed known.

(b) Show that the most powerful level- α test of H_0 vs. $H'_1 : a = a_1$, for some given $a_1 < a_0$, has power equal to

$$\beta(a_1) = 1 - (1 - \alpha)e^{-n(a_0 - a_1)/b}.$$
(1)

(c) Show that, for the problem in part (a) but with b unknown, any level- α test which rejects when

$$\frac{X_{(1)} - a_0}{\sum (X_i - X_{(1)})} \notin (C_1, C_2)$$
(2)

is most powerful at all alternatives (a_1, b) with $a_1 < a_0$ (independent of the particular choice of C_1, C_2).