Fall 2010 Math 541b Exam

1. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be independent pairs of independent random variables X_i and Y_i , where X and Y have continuous distribution functions F(x) and G(x), respectively. We want to test the hypothesis $H_0: F = G$ versus the alternative $H_1: F \neq G$. Let $Z_i = X_i - Y_i$ and rank the numbers $|Z_1|, |Z_2|, \cdots, |Z_n|$ in increasing order, and let r_i be the rank of $|Z_i|$, so that the smallest absolute value receives the rank of 1.

Define the Wilcoxon signed-rank statistic W as

$$W = \sum_{i=1}^{n} \operatorname{sign}(Z_i) r_i,$$

where $\operatorname{sign}(z) = 1$ if z > 0, $\operatorname{sign}(z) = -1$ if z < 0, and $\operatorname{sign}(z) = 0$ if z = 0.

- (a) Calculate $P(\operatorname{sign}(Z_i)) = 1$ and $P(\operatorname{sign}(Z_i)) = 0$ under the null hypotheses H_0 .
- (b) Calculate the mean and the variance of W under the null hypothesis H_0 .
- (c) Propose a test for H_0 versus H_1 that has approximate Type I error level α when the sample size is large.
- 2. Let X_1, X_2, \dots, X_n be i.i.d observations drawn from a mixture of two normal densities $\mathcal{N}(\mu_1, 1)$ and $\mathcal{N}(\mu_2, 1)$, where α and $1 - \alpha$ are the probabilities that a given observation is taken from the first and second normal distribution, respectively. We suppose that (μ_1, μ_2, α) are unknown.
 - (a) Write down the likelihood function of the observed data (X_1, X_2, \dots, X_n) as a function of $\theta = (\mu_1, \mu_2, \alpha)$.
 - (b) In order to design an EM algorithm to estimate θ , define missing data (Z_1, Z_2, \dots, Z_n) where $Z_i = 1$ if X_i is drawn from the first population $\mathcal{N}(\mu_1, 1)$, and $Z_i = 0$ if it comes from the second population. Write the likelihood function of the complete data $((X_1, Z_1), (X_2, Z_2), \dots, (X_n, Z_n)).$
 - (c) Design an EM algorithm to estimate the parameter vector θ .