Spring 2010 Math 541a Exam

- 1. Let X_1, \dots, X_n be i.i.d. $\Gamma(p, 1/\lambda)$ with density $g_{\theta}(x) = \frac{1}{\Gamma(p)} \lambda^p x^{p-1} e^{-\lambda x}$, $x > 0, \ \theta = (p, \lambda), \ p > 0, \ \lambda > 0$.
 - (a) Find a moment estimate of the parameter.
 - (b) Show that the moment estimates, $\tilde{\theta}$ are asymptotically bi-variate normal and give their asymptotic mean and variance covariance matrix.
 - (c) Compute the asymptotic variance covariance matrix of the maximum likelihood estimates. You may leave your answer in terms of Γ function derivatives.
- 2. Recall that the *t*-distribution with k > 0 degrees of freedom, location parameter ℓ , and scale parameter s > 0 has density

$$\frac{\Gamma\left((k+1)/2\right)}{\Gamma(k/2)\sqrt{k\pi s^2}} \left\{ 1 + k^{-1} \left(\frac{x-\ell}{s}\right)^2 \right\}^{-(k+1)/2}$$

Show that the *t*-distribution can be written as a mixture of Gaussian distributions by letting $X \sim N(\mu, \sigma^2)$, $\tau = 1/\sigma^2 \sim \Gamma(\alpha, \beta)$, and integrating the joint density $f(x, \tau | \mu)$ to get the marginal density $f(x | \mu)$. What are the parameters of the resulting *t*-distribution, as functions of μ, α, β ?