- 1. Let Y_1, \ldots, Y_n be a random sample from the density $p(y|\theta) = 2y/\theta^2$, $0 < y < \theta$, where $\theta > 0$ is an unknown parameter.
 - (a) Let $\overline{Y} = (1/n) \sum_{i=1}^{n} Y_i$. Find the mean and variance of \overline{Y} .
 - (b) Show that $\hat{\theta} = (3/2)\overline{Y}$ is an unbiased estimator of θ .
 - (c) State the Cramer-Rao Inequality for the above situation.
 - (d) Show that $\operatorname{Var}(\widehat{\theta})$ violates the Cramer-Rao inequality. Explain why.
- 2. (a) Let X have normal distribution with mean θ and variance σ^2 and let g be a differentiable function satisfying $E|(g'(X))| < \infty$. Show that

$$E[g(X)(X - \theta)] = \sigma^2 Eg'(X).$$

(Hint: use integration by parts or Fubini's theorem.)

(b) Let g(x) be a function with $-\infty < Eg(X) < \infty$ and g(-1) is finite. If X has a Poisson distribution with mean λ , show that

$$E(\lambda g(X)) = E(X(g(X-1))).$$