1. Let Y_{1}, \ldots, Y_{n} be a random sample from the density $p(y \mid \theta)=2 y / \theta^{2}, 0<y<\theta$, where $\theta>0$ is an unknown parameter.
(a) Let $\bar{Y}=(1 / n) \sum_{i=1}^{n} Y_{i}$. Find the mean and variance of \bar{Y}.
(b) Show that $\widehat{\theta}=(3 / 2) \bar{Y}$ is an unbiased estimator of θ.
(c) State the Cramer-Rao Inequality for the above situation.
(d) Show that $\operatorname{Var}(\widehat{\theta})$ violates the Cramer-Rao inequality. Explain why.
2. (a) Let X have normal distribution with mean θ and variance σ^{2} and let g be a differentiable function satisfying $E\left|\left(g^{\prime}(X)\right)\right|<\infty$. Show that

$$
E[g(X)(X-\theta)]=\sigma^{2} E g^{\prime}(X)
$$

(Hint: use integration by parts or Fubini's theorem.)
(b) Let $g(x)$ be a function with $-\infty<E g(X)<\infty$ and $g(-1)$ is finite. If X has a Poisson distribution with mean λ, show that

$$
E(\lambda g(X))=E(X(g(X-1)))
$$

