Fall 2010 Math 541a Exam

1. Let $\mu > 0$ be an unknown parameter, and suppose that X_1 and X_2 are independent random variables, each having the exponential distribution with density function

$$p(x;\mu) = \frac{1}{\mu} \exp\left(-\frac{x}{\mu}\right), \quad x > 0.$$

It is clear that since the distribution $p(x; \mu)$ has mean μ that an unbiased estimator of μ is given by $\overline{X} = (X_1 + X_2)/2$.

- (a) Calculate the variance of the estimator \overline{X} of μ .
- (b) Now consider the estimator of μ given by $T(X_1, X_2) = \sqrt{X_1 X_2}$. Calculate the bias of $T(X_1, X_2)$.
- (c) Show that the mean square error of $T(X_1, X_2)$ as an estimator of μ , that is

$$MSE(T) = E(T(X_1, X_2) - \mu)^2,$$

is strictly smaller than the mean squared error of the estimator \overline{X} of μ .

2. A random variable X has the Weibull(α, β) distribution if

$$P_{\alpha,\beta}(X > x) = \exp\{-(x/\alpha)^{\beta}\} \quad \text{for } x \ge 0.$$
(1)

Suppose that X_1, \ldots, X_n are i.i.d. Weibull (α_0, β_0) , where (α_0, β_0) is in the interior of a compact parameter space $\Theta \subseteq \mathbb{R}^+ \times \mathbb{R}^+$.

(a) Show that the MLE of α is given by

$$\widehat{\alpha} = \left(n^{-1} \sum_{i=1}^{n} X_i^{\widehat{\beta}} \right)^{1/\widehat{\beta}}, \qquad (2)$$

where $\widehat{\beta}$ is the MLE of β .

(b) As an alternative to maximum likelihood, let $\tilde{\beta}$ be any estimator of β and consider the estimator of α given by

$$\widetilde{\alpha} = \left(n^{-1} \sum_{i=1}^{n} X_i^{\widetilde{\beta}} \right)^{1/\widetilde{\beta}}.$$
(3)

Show that $\widetilde{\alpha}$ is a "pseudo-MLE" in the sense that it maximizes $\ell(\alpha, \widetilde{\beta})$, where $\ell(\alpha, \beta)$ is the log-likelihood function.

- (c) Prove that $EX_1^{\beta_0} = \alpha_0^{\beta_0}$.
- (d) Prove that if $\tilde{\beta}$ is any consistent estimator, than $\tilde{\alpha}$ given by (3) is consistent for α . *Hint:* Letting $Y_n(\beta) = n^{-1} \sum_i X_i^{\beta}$, argue that it suffices to prove that $Y_n(\tilde{\beta}) \to \alpha^{\beta_0}$ in probability. Then, using the convexity of $Y_n(\beta)$, show that

$$\left|Y_n(\widetilde{\beta}) - Y_n(\beta_0)\right| \to 0$$
 in probability,

and complete the argument by applying part (2c) and the law of large numbers.