Spring 2011 Math 541a Exam

1. Let X_{1}, \ldots, X_{n} be i.i.d. with distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$ and $n \geq 2$.
(a) Find UMVU estimates $\widehat{\mu}$ and $\widehat{\sigma^{2}}$ of μ and σ^{2}, respectively, and prove that they are such.
(b) Derive the marginal distributions of $\widehat{\mu}$ and $\widehat{\sigma^{2}}$, and prove that these estimators are independent.
2. For $\theta \in \mathbb{R}$ let $X_{1}, X_{2}, \cdots, X_{n}$ be independent continuous random variables, each having density function

$$
p(x ; \theta)=\exp (-(x-\theta)) I\{x>\theta\}
$$

where $I(x)=1$ if $x>0$ and $I(x)=0$ otherwise. Let $X_{(1)}, X_{(2)}, \cdots, X_{(n)}$ be the corresponding order statistics.
(a) Find the joint density function of $\left(X_{(1)}, X_{(2)}\right)$, and the marginal densities of $X_{(1)}$ and $X_{(2)}$.
(b) Show that

$$
T=X_{(1)}-(n-1)\left(X_{(2)}-X_{(1)}\right) / n
$$

is an unbiased estimator of θ.
(c) Find the maximum likelihood estimate of θ.

