Geometry/Topology Qualifying Exam

Spring 2011

Solve all SIX problems. Partial credit will be given to partial solutions.

1. (10 pts) Let $S^3 = \{x \in \mathbb{R}^4 \mid ||x|| = 1\}$ be the 3-dimensional sphere, oriented as the boundary of the unit ball B^4 in \mathbb{R}^4 with the standard orientation. Compute $\int_{S^3} \omega$, where

 $\omega = x_1 dx_2 \wedge dx_3 \wedge dx_4 + x_2 dx_1 \wedge dx_3 \wedge dx_4 + x_3 dx_1 \wedge dx_2 \wedge dx_4.$

(You may leave your answer in terms of volumes $vol(S^n)$ and $vol(B^n)$.)

- 2. (10 pts) Let $M = \{(x, y) \mid x, y \in \mathbb{R}^3, ||x|| = 1, ||y|| = 1, \langle x, y \rangle = 0\}$, where $\langle x, y \rangle$ is the standard inner product on \mathbb{R}^3 . Show that M is a smooth compact embedded submanifold of \mathbb{R}^6 and explain how M can be identified with the unit tangent bundle of S^2 .
- 3. (20 pts) Let \mathbb{RP}^n be the real projective space given by S^n / \sim , where $S^n = \{ \|x\| = 1 \} \subset \mathbb{R}^{n+1}$ and $x \sim -x$ for all $x \in S^n$.
 - (a) (5 pts) Use covering spaces to compute $\pi_1(\mathbb{RP}^n)$.
 - (b) (5 pts) Give a cell (CW) decomposition of \mathbb{RP}^n for $n \ge 1$.
 - (c) (5 pts) Use the cell decomposition to compute the homology groups $H_k(\mathbb{RP}^n)$, $k \ge 0$.
 - (d) (5 pts) For which values of $n \ge 1$ is \mathbb{RP}^n orientable? Explain.
- 4. (10 pts) Given a continuous map $f: X \to Y$ between topological spaces, define

$$C_f = \left((X \times [0,1]) \coprod Y \right) / \sim,$$

where $(x, 1) \sim f(x)$ for all $x \in X$ and $(x, 0) \sim (x', 0)$ for all $x, x' \in X$. Here \coprod is the disjoint union. Then prove that there is a long exact sequence

$$\cdots \to H_{i+1}(X) \xrightarrow{f_*} H_{i+1}(Y) \to \widetilde{H}_{i+1}(C_f) \to H_i(X) \xrightarrow{f_*} H_i(Y) \to \cdots,$$

where f_* is the map on homology induced from f and \tilde{H}_i denotes the *i*th reduced homology group.

- 5. (10 pts) Prove that the fundamental group of a connected Lie group G is abelian. (A *Lie group* G is a smooth manifold which is also a group, and whose group operations multiplication and inverse are smooth maps.) [Hint: One possible way of proving this is to find an explicit homotopy between fg and gf, where f and g are loops in G.]
- 6. (10 pts) Let $M \subset \mathbb{R}^3$ be an embedded compact oriented surface (without boundary) of genus $g \geq 1$. Show that the Gaussian curvature κ of M must vanish somewhere on M.